Network Working Group                                       K. Morneault
Request for Comments: 3057                                 Cisco Systems
Category: Standards Track                                   S. Rengasami
                                                                M. Kalla
                                                  Telcordia Technologies
                                                           G. Sidebottom
                                                         Nortel Networks
                                                           February 2001

                    ISDN Q.921-User Adaptation Layer

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2001).  All Rights Reserved.

Abstract

   This document defines a protocol for backhauling of ISDN Q.921 User
   messages over IP using the Stream Control Transmission Protocol
   (SCTP).  This protocol would be used between a Signaling Gateway (SG)
   and Media Gateway Controller (MGC).  It is assumed that the SG
   receives ISDN signaling over a standard ISDN interface.

Morneault, et al.           Standards Track                     [Page 1]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

Table of Contents

   1.  Introduction.................................................  2
     1.1  Scope.....................................................  2
     1.2  Terminology...............................................  3
     1.3  IUA Overview..............................................  4
     1.4  Services Provided by the IUA Layer........................  9
     1.5  Functions Implemented by the IUA Layer.................... 12
     1.6  Definition of IUA Boundaries.............................. 14
   2.  Conventions.................................................. 16
   3.  Protocol Elements............................................ 17
     3.1  Common Message Header..................................... 17
     3.2  IUA Message Header........................................ 20
     3.3  Description of Messages................................... 22
   4.  Procedures................................................... 45
     4.1  Procedures to Support Service in Section 1.4.1............ 45
     4.2  Procedures to Support Service in Section 1.4.2............ 46
     4.3  Procedures to Support Service in Section 1.4.3............ 47
   5. Examples...................................................... 56
     5.1 Establishment of associations between SG and MGC examples.. 56
     5.2 ASP Traffic Fail-over Examples............................. 58
     5.3 Q.921/Q.931 primitives backhaul Examples................... 59
     5.4 Layer Management Communication Examples.................... 61
   6.  Security..................................................... 61
     6.1 Threats.................................................... 61
     6.2 Protecting Confidentiality ................................ 62
   7.  IANA Considerations.......................................... 62
     7.1 SCTP Payload Protocol Identifier........................... 62
     7.2 IUA Protocol Extensions.................................... 62
   8.  Acknowledgements............................................. 64
   9.  References................................................... 64
   10. Authors' Addresses........................................... 65
   11. Full Copyright Statement..................................... 66

1.  Introduction

   In this document, the term Q.921-User refers to an upper layer which
   uses the services of Q.921, not the user side of ISDN interface [1].
   Examples of the upper layer would be Q.931 and QSIG.

   This section describes the need for ISDN Q.921-User Adaptation (IUA)
   layer protocol as well as how this protocol shall be implemented.

1.1 Scope

   There is a need for Switched Circuit Network (SCN) signaling protocol
   delivery from an ISDN Signaling Gateway (SG) to a Media Gateway
   Controller (MGC) as described in the Framework Architecture for

Morneault, et al.           Standards Track                     [Page 2]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   Signaling Transport [4].  The delivery mechanism SHOULD meet the
   following criteria:

   *  Support for transport of the Q.921 / Q.931 boundary primitives
   *  Support for communication between Layer Management modules on SG
      and MGC
   *  Support for management of active associations between SG and MGC

   This document supports both ISDN Primary Rate Access (PRA) as well as
   Basic Rate Access (BRA) including the support for both point-to-point
   and point-to-multipoint modes of communication.  This support
   includes Facility Associated Signaling (FAS), Non-Facility Associated
   Signaling (NFAS) and NFAS with backup D channel.  QSIG adaptation
   layer requirements do not differ from Q.931 adaptation layer, hence;
   the procedures described in this document are also applicable for a
   QSIG adaptation layer.  For simplicity, only Q.931 will be mentioned
   in the rest of this document.

1.2 Terminology

   Interface - For the purposes of this document an interface supports
   the relevant ISDN signaling channel.  This signaling channel MAY be a
   16 kbps D channel for an ISDN BRA as well as 64 kbps primary or
   backup D channel for an ISDN PRA.  For QSIG, the signaling channel is
   a Qc channel.

   Q.921-User - Any protocol normally using the services of the ISDN
   Q.921 (e.g., Q.931, QSIG, etc.).

   Backhaul - A SG terminates the lower layers of an SCN protocol and
   backhauls the upper layer(s) to MGC for call processing.  For the
   purposes of this document the SG terminates Q.921 and backhauls Q.931
   to MGC.

   Association - An association refers to a SCTP association.  The
   association will provide the transport for the delivery of Q.921-User
   protocol data units and IUA adaptation layer peer messages.

   Stream - A stream refers to an SCTP stream; a uni-directional logical
   channel established from one SCTP endpoint to another associated SCTP
   endpoint, within which all user messages are delivered in-sequence
   except for those submitted to the un-ordered delivery service.

   Interface Identifier - The Interface Identifier identifies the
   physical interface at the SG for which the signaling messages are
   sent/received. The format of the Interface Identifier parameter can
   be text or integer, the values of which are assigned according to

Morneault, et al.           Standards Track                     [Page 3]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   network operator policy. The values used are of local significance
   only, coordinated between the SG and ASP.  Significance is not
   implied across SGs served by an AS.

   Application Server (AS) - A logical entity serving a specific
   application instance.  An example of an Application Server is a MGC
   handling the Q.931 and call processing for D channels terminated by
   the Signaling Gateways.  Practically speaking, an AS is modeled at
   the SG as an ordered list of one or more related Application Server
   Processes (e.g., primary, secondary, tertiary).

   Application Server Process (ASP) - A process instance of an
   Application Server.  Examples of Application Server Processes are
   primary or backup MGC instances.

   Fail-over - The capability to re-route signaling traffic as required
   between related ASPs in the event of failure or unavailability of the
   currently used ASP (e.g., from primary MGC to back-up MGC).  Fail-
   over also applies upon the return to service of a previously
   unavailable process.

   Layer Management - Layer Management is a nodal function that handles
   the inputs and outputs between the IUA layer and a local management
   entity.

   Network Byte Order - Most significant byte first, a.k.a Big Endian.

   Host - The computing platform that the ASP process is running on.

1.3 IUA Overview

   The architecture that has been defined [4] for SCN signaling
   transport over IP uses multiple components, including an IP transport
   protocol, a signaling common transport protocol and an adaptation
   module to support the services expected by a particular SCN signaling
   protocol from its underlying protocol layer.

   This document defines an adaptation module that is suitable for the
   transport of ISDN Q.921-User (e.g., Q.931) messages.

1.3.1  Example - SG to MGC

   In a Signaling Gateway, it is expected that the ISDN signaling is
   received over a standard ISDN network termination.  The SG then
   provides interworking of transport functions with IP Signaling
   Transport, in order to transport the Q.931 signaling messages to the
   MGC where the peer Q.931 protocol layer exists, as shown below:

Morneault, et al.           Standards Track                     [Page 4]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

            ******   ISDN        ******      IP      *******
            * EP *---------------* SG *--------------* MGC *
            ******               ******              *******

            +-----+                                  +-----+
            |Q.931|              (NIF)               |Q.931|
            +-----+           +----------+           +-----+
            |     |           |     | IUA|           | IUA |
            |     |           |     +----+           +-----+
            |Q.921|           |Q.921|SCTP|           |SCTP |
            |     |           |     +----+           +-----+
            |     |           |     | IP |           | IP  |
            +-----+           +-----+----+           +-----+

            NIF  - Nodal Interworking Function
            EP   - ISDN End Point
            SCTP - Stream Control Transmission Protocol (Refer to [3])
            IUA  - ISDN User Adaptation Layer Protocol

   It is recommended that the IUA use the services of the Stream Control
   Transmission Protocol (SCTP) as the underlying reliable common
   signaling transport protocol.  The use of SCTP provides the following
   features:

      -  explicit packet-oriented delivery (not stream-oriented)
      -  sequenced delivery of user messages within multiple streams,
         with an option for order-of-arrival delivery of individual user
         messages,
      -  optional multiplexing of user messages into SCTP datagrams,
      -  network-level fault tolerance through support of multi-homing
         at either or both ends of an association,
      -  resistance to flooding and masquerade attacks, and
      -  data segmentation to conform to discovered path MTU size

   There are scenarios without redundancy requirements and scenarios in
   which redundancy is supported below the transport layer.  In these
   cases, the SCTP functions above MAY NOT be a requirement and TCP can
   be used as the underlying common transport protocol.

1.3.2  Support for the management of SCTP associations between the SG
       and ASPs

   The IUA layer at the SG maintains the availability state of all
   dynamically registered remote ASPs, in order to manage the SCTP
   Associations and the traffic between the SG and ASPs.  As well, the
   active/inactive state of remote ASP(s) are also maintained.  Active
   ASPs are those currently receiving traffic from the SG.

Morneault, et al.           Standards Track                     [Page 5]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   The IUA layer MAY be instructed by local management to establish an
   SCTP association to a peer IUA node.  This can be achieved using the
   M-SCTP ESTABLISH primitive to request, indicate and confirm the
   establishment of an SCTP association with a peer IUA node.

   The IUA layer MAY also need to inform local management of the status
   of the underlying SCTP associations using the M-SCTP STATUS request
   and indication primitive.  For example, the IUA MAY inform local
   management of the reason for the release of an SCTP association,
   determined either locally within the IUA layer or by a primitive from
   the SCTP.

1.3.3  Signaling Network Architecture

   A Signaling Gateway is used to support the transport of Q.921-User
   signaling traffic to one or more distributed ASPs (e.g., MGCs).
   Clearly, the IUA protocol is not designed to meet the performance and
   reliability requirements for such transport by itself.  However, the
   conjunction of distributed architecture and redundant networks does
   allow for a sufficiently reliable transport of signaling traffic over
   IP.  The IUA protocol is flexible enough to allow its operation and
   management in a variety of physical configurations, enabling Network
   Operators to meet their performance and reliability requirements.

   To meet the ISDN signaling reliability and performance requirements
   for carrier grade networks, Network Operators SHOULD ensure that
   there is no single point of failure provisioned in the end-to-end
   network architecture between an ISDN node and an IP ASP.

   Depending of course on the reliability of the SG and ASP functional
   elements, this can typically be met by the provision of redundant
   QOS-bounded IP network paths for SCTP Associations between SCTP End
   Points, and redundant Hosts, and redundant SGs.  The distribution of
   ASPs within the available Hosts is also important.  For a particular
   Application Server, the related ASPs SHOULD be distributed over at
   least two Hosts.

   An example logical network architecture relevant to carrier-grade
   operation in the IP network domain is shown in Figure 1 below:

Morneault, et al.           Standards Track                     [Page 6]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

                                                          Host1
     ********                                         **************
     *      *_________________________________________*  ********  *
     *      *                                _________*  * ASP1 *  *
     *  SG1 *   SCTP Associations           |         *  ********  *
     *      *_______________________        |         *            *
     ********                       |       |         **************
                                    |       |
     ********                       |       |
     *      *_______________________________|
     *      *                       |
     *  SG2 *    SCTP Associations  |
     *      *____________           |
     *      *            |          |                     Host2
     ********            |          |                 **************
                         |          |_________________*  ********  *
                         |____________________________*  * ASP1 *  *
                                                      *  ********  *
                                                      *            *
                                                      **************
                                                              .
                                                              .
                                                              .

                       Figure 2 - Logical Model Example

   For carrier grade networks, the failure or isolation of a particular
   ASP SHOULD NOT cause stable calls to be dropped.  This implies that
   ASPs need, in some cases, to share the call state or be able to pass
   the call state between each other.  However, this sharing or
   communication of call state information is outside the scope of this
   document.

1.3.4 ASP Fail-over Model and Terminology

   The IUA layer supports ASP fail-over functions in order to support a
   high availability of call processing capability.  All Q.921-User
   messages incoming to an SG are assigned to a unique Application
   Server, based on the Interface Identifier of the message.

   The Application Server is, in practical terms, a list of all ASPs
   configured to process Q.921-User messages from certain Interface
   Identifiers.  One or more ASPs in the list are normally active (i.e.,
   handling traffic) while any others MAY be unavailable or inactive, to
   be possibly used in the event of failure or unavailability of the
   active ASP(s).

Morneault, et al.           Standards Track                     [Page 7]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   The fail-over model supports an n+k redundancy model, where n ASP(s)
   are the minimum number of redundant ASPs required to handle traffic
   and k ASPs are available to take over for a failed or unavailable
   ASP.  Note that 1+1 active/standby redundancy is a subset of this
   model.  A simplex 1+0 model is also supported as a subset, with no
   ASP redundancy.

   To avoid a single point of failure, it is recommended that a minimum
   of two ASPs be in the list, resident in separate hosts and therefore
   available over different SCTP Associations.  For example, in the
   network shown in Figure 2, all messages from a particular D Channel
   (Interface Identifier) could be sent to ASP1 in Host1 or ASP1 in
   Host2. The AS list at SG1 might look like the following:

      Interface Identifier(s) - Application Server #1
          ASP1/Host1  - State=Up, Active
          ASP1/Host2  - State=Up, Inactive

   In this 1+1 redundancy case, ASP1 in Host1 would be sent any incoming
   message for the Interface Identifiers registered.  ASP1 in Host2
   would normally be brought to the active state upon failure of, or
   loss of connectivity to, ASP1/Host1.  In this example, both ASPs are
   Up, meaning that the related SCTP association and far-end IUA peer is
   ready.

   The AS List at SG1 might also be set up in load-share mode as shown
   below:

      Interface Identifier(s) - Application Server #1
          ASP1/Host1 - State=Up, Active
          ASP1/Host2 - State=Up, Active

   In this case, both the ASPs would be sent a portion of the traffic.

   In the process of fail-over, it is recommended that in the case of
   ASPs supporting call processing, stable calls do not get released.
   It is possible that calls in transition MAY fail, although measures
   of communication between the ASPs involved can be used to mitigate
   this problem.  For example, the two ASPs MAY share call state via
   shared memory, or MAY use an ASP to ASP protocol to pass call state
   information.  The ASP to ASP protocol is outside the scope of this
   document.

1.3.5  Client/Server Model

   It is recommended that the SG and ASP be able to support both client
   and server operation.  The peer endpoints using IUA SHOULD be
   configured so that one always takes on the role of client and the

Morneault, et al.           Standards Track                     [Page 8]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   other the role of server for initiating SCTP associations.  The
   default orientation would be for the SG to take on the role of server
   while the ASP is the client.  In this case, ASPs SHOULD initiate the
   SCTP association to the SG.

   The SCTP (and UDP/TCP) Registered User Port Number Assignment for IUA
   is 9900.

1.4  Services Provided by the IUA Layer

1.4.1  Support for transport of Q.921/Q.931 boundary primitives

   In the backhaul scenario, the Q.921/Q.931 boundary primitives are
   exposed.  IUA layer needs to support all of the primitives of this
   boundary to successfully backhaul Q.931.

   This includes the following primitives [1]:

   DL-ESTABLISH

   The DL-ESTABLISH primitives are used to request, indicate and confirm
   the outcome of the procedures for establishing multiple frame
   operation.

   DL-RELEASE

   DL-RELEASE primitives are used to request, indicate, and confirm the
   outcome of the procedures for terminating a previously established
   multiple frame operation, or for reporting an unsuccessful
   establishment attempt.

   DL-DATA

   The DL-DATA primitives are used to request and indicate layer 3
   (Q.931) messages which are to be transmitted, or have been received,
   by the Q.921 layer using the acknowledged information transfer
   service.

   DL-UNIT DATA

   The DL-UNIT DATA primitives are used to request and indicate layer 3
   (Q.931) messages which are to be transmitted, by the Q.921 layer
   using the unacknowledged information transfer service.

Morneault, et al.           Standards Track                     [Page 9]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

1.4.2  Support for communication between Layer Management modules on SG
       and MGC

   It is envisioned that the IUA layer needs to provide some services
   that will facilitate communication between Layer Management modules
   on the SG and MGC.  These primitives are pointed out in [2], which
   are shown below:

   M-TEI STATUS

   The M-TEI STATUS primitives are used to request, confirm and indicate
   the status (assigned/unassigned) of a TEI.

   M-ERROR

   The M-ERROR primitive is used to indicate an error with a received
   IUA message (e.g., interface identifier value is not known to the
   SG).

1.4.3 Support for management of active associations between SG and MGC

   A set of primitives between the IUA layer and the Layer Management
   are defined below to help the Layer Management manage the SCTP
   association(s) between the SG and MGC.  The IUA layer can be
   instructed by the Layer Management to establish an SCTP association
   to a peer IUA node.  This procedure can be achieved using the M-SCTP
   ESTABLISH primitive.

   M-SCTP ESTABLISH

   The M-SCTP ESTABLISH primitives are used to request, indicate, and
   confirm the establishment of an SCTP association to a peer IUA node.

   M-SCTP RELEASE

   The M-SCTP RELEASE primitives are used to request, indicate, and
   confirm the release of an SCTP association to a peer IUA node.

   The IUA layer MAY also need to inform the status of the SCTP
   associations to the Layer Management.  This can be achieved using the
   M-SCTP STATUS primitive.

   M-SCTP STATUS

   The M-SCTP STATUS primitives are used to request and indicate the
   status of the underlying SCTP association(s).

Morneault, et al.           Standards Track                    [Page 10]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   The Layer Management MAY need to inform the IUA layer of an AS/ASP
   status (i.e., failure, active, etc.), so that messages can be
   exchanged between IUA layer peers to stop traffic to the local IUA
   user.  This can be achieved using the M-ASP STATUS primitive.

   M-ASP STATUS

   The ASP status is stored inside IUA layer on both the SG and MGC
   sides.  The M-ASP STATUS primitive can be used by Layer Management to
   request the status of the Application Server Process from the IUA
   layer.  This primitive can also be used to indicate the status of the
   Application Server Process.

   M-ASP-UP

   The M-ASP-UP primitive can be used by Layer Management to send a ASP
   Up message for the Application Server Process.  It can also be used
   to generate an ASP Up Acknowledgement.

   M-ASP-DOWN

   The M-ASP-DOWN primitive can be used by Layer Management to send a
   ASP Down message for the Application Server Process.  It can also be
   used to generate an ASP Down Acknowledgement.

   M-ASP-ACTIVE

   The M-ASP-UP primitive can be used by Layer Management to send a ASP
   Active message for the Application Server Process.  It can also be
   used to generate an ASP Active Acknowledgement.

   M-ASP-INACTIVE

   The M-ASP-UP primitive can be used by Layer Management to send a ASP
   Inactive message for the Application Server Process.  It can also be
   used to generate an ASP Inactive Acknowledgement.

   M-AS STATUS

   The M-AS STATUS primitive can be used by Layer Management to request
   the status of the Application Server.  This primitive can also be
   used to indicate the status of the Application Server.

Morneault, et al.           Standards Track                    [Page 11]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

1.5 Functions Implemented by the IUA Layer

1.5.1 Mapping

   The IUA layer MUST maintain a map of the Interface Identifier to a
   physical interface on the Signaling Gateway.  A physical interface
   would be a T1 line, E1 line, etc., and could include the TDM
   timeslot. In addition, for a given interface the SG MUST be able to
   identify the associated signaling channel.  IUA layers on both SG and
   MGC MAY maintain the status of TEIs and SAPIs.

   The SG maps an Interface Identifier to an SCTP association/stream
   only when an ASP sends an ASP Active message for a particular
   Interface Identifier.  It MUST be noted, however, that this mapping
   is dynamic and could change at any time due to a change of ASP state.
   This mapping could even temporarily be invalid, for example during
   failover of one ASP to another.  Therefore, the SG MUST maintain the
   states of AS/ASP and reference them during the routing of an messages
   to an AS/ASP.

   One example of the logical view of relationship between D channel,
   Interface Identifier, AS and ASP in the SG is shown below:

          /---------------------------------------------------+
         /   /------------------------------------------------|--+
        /   /                                                 v  |
       /   /    +----+             act+-----+    +-------+ -+--+-|+--+-
D chan1-------->|IID |-+          +-->| ASP |--->| Assoc |       v
         /      +----+ |  +----+  |   +-----+    +-------+ -+--+--+--+-
        /              +->| AS |--+                        Streams
       /        +----+ |  +----+   stb+-----+
D chan2-------->|IID |-+              | ASP |
                +----+                +-----+

   where IID = Interface Identifier

   Note that an ASP can be in more than one AS.

1.5.2 Status of ASPs

   The IUA layer on the SG MUST maintain the state of the ASPs it is
   supporting.  The state of an ASP changes because of reception of
   peer-to-peer messages (ASPM messages as described in Section 3.3.2)
   or reception of indications from the local SCTP association.  ASP
   state transition procedures are described in Section 4.3.1.

Morneault, et al.           Standards Track                    [Page 12]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   At a SG, an Application Server list MAY contain active and inactive
   ASPs to support ASP load-sharing and fail-over procedures.  When, for
   example, both a primary and a back-up ASP are available, IUA peer
   protocol is required to control which ASP is currently active.  The
   ordered list of ASPs within a logical Application Server is kept
   updated in the SG to reflect the active Application Server
   Process(es).

   Also the IUA layer MAY need to inform the local management of the
   change in status of an ASP or AS.  This can be achieved using the M-
   ASP STATUS or M-AS STATUS primitives.

1.5.3 SCTP Stream Management

   SCTP allows a user specified number of streams to be opened during
   the initialization.  It is the responsibility of the IUA layer to
   ensure proper management of these streams.  Because of the
   unidirectional nature of streams, an IUA layer is not aware of the
   stream number to Interface Identifier mapping of its peer IUA layer.
   Instead, the Interface Identifier is in the IUA message header.

   The use of SCTP streams within IUA is recommended in order to
   minimize transmission and buffering delay, therefore improving the
   overall performance and reliability of the signaling elements.  It is
   recommended that a separate SCTP stream is used for each D channel.

1.5.4 Seamless Network Management Interworking

   The IUA layer on the SG SHOULD pass an indication of unavailability
   of the IUA-User (Q.931) to the local Layer Management, if the
   currently active ASP moves from the ACTIVE state.  The Layer
   Management could instruct Q.921 to take some action, if it deems
   appropriate.

   Likewise, if an SCTP association fails, the IUA layer on both the SG
   and ASP sides MAY generate Release primitives to take the data links
   out-of-service.

1.5.5 Congestion Management

   If the IUA layer becomes congested (implementation dependent), it MAY
   stop reading from the SCTP association to flow control from the peer
   IUA.

Morneault, et al.           Standards Track                    [Page 13]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

1.6 Definition of IUA Boundaries

1.6.1 Definition of IUA/Q.921 boundary

   DL-ESTABLISH
   DL-RELEASE
   DL-DATA
   DL-UNIT DATA

1.6.2 Definition of IUA/Q.931 boundary

   DL-ESTABLISH
   DL-RELEASE
   DL-DATA
   DL-UNIT DATA

1.6.3 Definition of SCTP/IUA Boundary

   An example of the upper layer primitives provided by SCTP are
   available in Reference [3] section 10.

1.6.4 Definition of IUA/Layer-Management Boundary

   M-SCTP ESTABLISH request
   Direction: LM -> IUA
   Purpose: LM requests ASP to establish an SCTP association with an SG.

   M-STCP ESTABLISH confirm
   Direction: IUA -> LM
   Purpose: ASP confirms to LM that it has established an SCTP
            association with an SG.

   M-SCTP ESTABLISH indication
   Direction: IUA -> LM
   Purpose: SG informs LM that an ASP has established an SCTP
            association.

   M-SCTP RELEASE request
   Direction: LM -> IUA
   Purpose: LM requests ASP to release an SCTP association with SG.

   M-SCTP RELEASE confirm
   Direction: IUA -> LM
   Purpose: ASP confirms to LM that it has released SCTP association
            with SG.

Morneault, et al.           Standards Track                    [Page 14]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   M-SCTP RELEASE indication
   Direction: IUA -> LM
   Purpose: SG informs LM that ASP has released an SCTP association.

   M-SCTP STATUS request
   Direction: LM -> IUA
   Purpose: LM requests IUA to report status of SCTP association.

   M-SCTP STATUS indication
   Direction: IUA -> LM
   Purpose: IUA reports status of SCTP association.

   M-ASP STATUS request
   Direction: LM -> IUA
   Purpose: LM requests SG to report status of remote ASP.

   M-ASP STATUS indication
   Direction: IUA -> LM
   Purpose: SG reports status of remote ASP.

   M-AS-STATUS request
   Direction: LM -> IUA
   Purpose: LM requests SG to report status of AS.

   M-AS-STATUS indication
   Direction: IUA -> LM
   Purpose: SG reports status of AS.

   M-NOTIFY indication
   Direction: IUA -> LM
   Purpose: ASP reports that it has received a NOTIFY message
            from its peer.

   M-ERROR indication
   Direction: IUA -> LM
   Purpose: ASP or SG reports that it has received an ERROR
            message from its peer.

   M-ASP-UP request
   Direction: LM -> IUA
   Purpose: LM requests ASP to start its operation and send an ASP UP
            message to the SG.

   M-ASP-UP confirm
   Direction: IUA -> LM
   Purpose: ASP reports that is has received an ASP UP Acknowledgement
            message from the SG.

Morneault, et al.           Standards Track                    [Page 15]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   M-ASP-DOWN request
   Direction: LM -> IUA
   Purpose: LM requests ASP to stop its operation and send an ASP DOWN
            message to the SG.

   M-ASP-DOWN confirm
   Direction: IUA -> LM
   Purpose: ASP reports that is has received an ASP DOWN
            Acknowledgement message from the SG.

   M-ASP-ACTIVE request
   Direction: LM -> IUA
   Purpose: LM requests ASP to send an ASP ACTIVE message to the SG.

   M-ASP-ACTIVE confirm
   Direction: IUA -> LM
   Purpose: ASP reports that is has received an ASP ACTIVE
            Acknowledgement message from the SG.

   M-ASP-INACTIVE request
   Direction: LM -> IUA
   Purpose: LM requests ASP to send an ASP INACTIVE message to the SG.

   M-ASP-INACTIVE confirm
   Direction: IUA -> LM
   Purpose: ASP reports that is has received an ASP INACTIVE
            Acknowledgement message from the SG.

   M-TEI STATUS request
   Direction: LM -> IUA
   Purpose: LM requests ASP to send a TEI status request to the SG.

   M-TEI STATUS indication
   Direction: IUA -> LM
   Purpose: ASP reports that is has received a TEI status indication
            from the SG.

   M-TEI STATUS confirm
   Direction: IUA -> LM
   Purpose: ASP reports that is has received a TEI status confirm from the
            SG.

2.0 Conventions

   The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
   SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL, when
   they appear in this document, are to be interpreted as described in
   [RFC2119].

Morneault, et al.           Standards Track                    [Page 16]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

3.0 Protocol Elements

   This section describes the format of various messages used in this
   protocol.

3.1 Common Message Header

   The protocol messages for Q.921-User Adaptation require a message
   header which contains the adaptation layer version, the message type,
   and message length.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Version    |   Reserved    | Message Class | Message Type  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        Message Length                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 3 Common Header Format

   All fields in an IUA message MUST be transmitted in the network byte
   order, unless otherwise stated.

3.1.1 Version

   The version field contains the version of the IUA adaptation layer.
   The supported versions are the following:

      Value    Version
      -----    -------
        1      Release 1.0

3.1.2  Message Classes and Types

   The following List contains the valid Message Classes:

   Message Class: 8 bits (unsigned integer)

     0      Management (MGMT) Message [IUA/M2UA/M3UA/SUA]
     1      Transfer Messages [M3UA]
     2      SS7 Signalling Network Management (SSNM) Messages [M3UA/SUA]
     3      ASP State Maintenance (ASPSM) Messages [IUA/M2UA/M3UA/SUA]
     4      ASP Traffic Maintenance (ASPTM) Messages [IUA/M2UA/M3UA/SUA]
     5      Q.921/Q.931 Boundary Primitives Transport (QPTM)
            Messages [IUA]
     6      MTP2 User Adaptation (MAUP) Messages [M2UA]
     7      Connectionless Messages [SUA]

Morneault, et al.           Standards Track                    [Page 17]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

     8      Connection-Oriented Messages [SUA]
  9 to 127  Reserved by the IETF
128 to 255  Reserved for IETF-Defined Message Class extensions

   The following list contains the message names for the defined
   messages.

    Q.921/Q.931 Boundary Primitives Transport (QPTM) Messages

       0        Reserved
       1        Data Request Message
       2        Data Indication Message
       3        Unit Data Request Message
       4        Unit Data Indication Message
       5        Establish Request
       6        Establish Confirm
       7        Establish Indication
       8        Release Request
       9        Release Confirm
      10        Release Indication
    11 to 127   Reserved by the IETF
   128 to 255   Reserved for IETF-Defined QPTM extensions

    Application Server Process State Maintenance (ASPSM) messages

       0        Reserved
       1        ASP Up (UP)
       2        ASP Down (DOWN)
       3        Heartbeat (BEAT)
       4        ASP Up Ack (UP ACK)
       5        ASP Down Ack (DOWN ACK)
       6        Heatbeat Ack (BEAT ACK)
     7 to 127   Reserved by the IETF
   128 to 255   Reserved for IETF-Defined ASPSM extensions

    Application Server Process Traffic Maintenance (ASPTM) messages

       0        Reserved
       1        ASP Active (ACTIVE)
       2        ASP Inactive (INACTIVE)
       3        ASP Active Ack (ACTIVE ACK)
       4        ASP Inactive Ack (INACTIVE ACK)
     5 to 127   Reserved by the IETF
   128 to 255   Reserved for IETF-Defined ASPTM extensions

Morneault, et al.           Standards Track                    [Page 18]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

    Management (MGMT) Messages

       0        Error (ERR)
       1        Notify (NTFY)
       2        TEI Status Request
       3        TEI Status Confirm
       4        TEI Status Indication
     5 to 127   Reserved by the IETF
   128 to 255   Reserved for IETF-Defined MGMT extensions

3.1.3  Reserved

   The Reserved field is 8-bits.  It SHOULD be set to all '0's and
   ignored by the receiver.

3.1.4  Message Length

   The Message length defines the length of the message in octets,
   including the Common header.

3.1.5  Variable-Length Parameter Format

   IUA messages consist of a Common Header followed by zero or more
   variable-length parameters, as defined by the message type.  The
   variable-length parameters contained in a message are defined in a
   Tag-Length-Value format as shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Parameter Tag        |       Parameter Length        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   \                                                               \
   /                       Parameter Value                         /
   \                                                               \
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Mandatory parameters MUST be placed before optional parameters in a
   message.

   Parameter Tag: 16 bits (unsigned integer)

   The Tag field is a 16 bit identifier of the type of parameter.  It
   takes a value of 0 to 65534.

   The value of 65535 is reserved for IETF-defined extensions.  Values
   other than those defined in specific parameter description are
   reserved for use by the IETF.

Morneault, et al.           Standards Track                    [Page 19]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   Parameter Length: 16 bits (unsigned integer)

   The Parameter Length field contains the size of the parameter in
   bytes, including the Parameter Tag, Parameter Length, and Parameter
   Value fields.  The Parameter Length does not include any padding
   bytes.

   Parameter Value: variable-length

   The Parameter Value field contains the actual information to be
   transferred in the parameter.

   The total length of a parameter (including Tag, Parameter Length and
   Value fields) MUST be a multiple of 4 bytes.  If the length of the
   parameter is not a multiple of 4 bytes, the sender pads the Parameter
   at the end (i.e., after the Parameter Value field) with all zero
   bytes. The length of the padding is NOT included in the parameter
   length field.  A sender SHOULD NEVER pad with more than 3 bytes.  The
   receiver MUST ignore the padding bytes.

3.2 IUA Message Header

   In addition to the common message header, there will be a specific
   message header for QPTM and the TEI Status MGMT messages.  The IUA
   message header will immediately follow the Common header in these
   messages.

   This message header will contain the Interface Identifier and Data
   Link Connection Identifier (DLCI).  The Interface Identifier
   identifies the physical interface terminating the signaling channel
   at the SG for which the signaling messages are sent/received.  The
   format of the Interface Identifier parameter can be text or integer.
   The Interface Identifiers are assigned according to network operator
   policy.  The integer values used are of local significance only,
   coordinated between the SG and ASP.

   The integer formatted Interface Identifier MUST be supported.  The
   text formatted Interface Identifier MAY optionally be supported.

Morneault, et al.           Standards Track                    [Page 20]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0x1)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Interface Identifier (integer)                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0x5)           |             Length=8          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            DLCI               |              Spare            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Figure 4 IUA Message Header (Integer-based Interface Identifier)

   The Tag value for the Integer-based Interface Identifier is 0x1.  The
   length is always set to a value of 8.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0x3)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                   Interface Identifier (text)                 |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0x5)           |             Length=8          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            DLCI               |             Spare             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 5  IUA Message Header (Text-based Interface Identifier)

   The Tag value for the Text-based Interface Identifier is 0x3.  The
   length is variable.

   The DLCI format is shown below in Figure 6.

      0     1     2     3     4     5     6     7
   +-----+-----+-----+-----+-----+-----+-----+-----+
   |  0  | SPR |      SAPI                         |
   +-----------------------------------------------+
   |  1  |            TEI                          |
   +-----------------------------------------------+

              Figure 6  DLCI Format

   SPR:  Spare 2nd bit in octet 1, (1 bit)

Morneault, et al.           Standards Track                    [Page 21]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   SAPI: Service Access Point Identifier, 3rd through 8th bits in octet
      1 (6 bits)

   TEI:  Terminal Endpoint Identifier, 2nd through 8th bits in octet 2
      (7 bits)

   The DLCI field (including the SAPI and TEI) is coded in accordance
   with Q.921.

3.3 IUA  Messages

   The following section defines the messages and parameter contents.
   The IUA messages will use the common message header (Figure 3) and
   the IUA message header (Figure 4 and Figure 5).

3.3.1 Q.921/Q.931 Boundary Primitives Transport (QPTM) Messages

3.3.1.1  Establish Messages (Request, Confirm, Indication)

   The Establish Messages are used to establish a data link on the
   signaling channel or to confirm that a data link on the signaling
   channel has been established.  The MGC controls the state of the D
   channel.  When the MGC desires the D channel to be in-service, it
   will send the Establish Request message.

   When the MGC sends an IUA Establish Request message, the MGC MAY
   start a timer.  This timer would be stopped upon receipt of an IUA
   Establish Confirm or Establish Indication.  If the timer expires, the
   MGC would re-send the IUA Establish Request message and restart the
   timer.  In other words, the MGC MAY continue to request the
   establishment of the data link on periodic basis until the desired
   state is achieved or take some other action (notify the Management
   Layer).

   When the SG receives an IUA Establish Request from the MGC, the SG
   shall send the Q.921 Establish Request primitive to the its Q.921
   entity.  In addition, the SG shall map any response received from the
   Q.921 entity to the appropriate message to the MGC.  For example, if
   the Q.921 entity responds with a Q.921 Establish Confirm primitive,
   the IUA layer shall map this to an IUA Establish Confirm message.  As
   another example, if the IUA Layer receives a Q.921 Release Confirm or
   Release Indication as an apparent response to the Q.921 Establish
   Request primitive, the IUA Layer shall map these to the corresponding
   IUA Release Confirm or Release Indication messages.

   The Establish messages contain the common message header followed by
   IUA message header.  It does not contain any additional parameters.

Morneault, et al.           Standards Track                    [Page 22]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

3.3.1.2  Release Messages (Request, Indication, Confirmation)

   The Release Request message is used to release the data link on the
   signaling channel.  The Release Confirm and Indication messages are
   used to indicate that the data link on the signaling channel has been
   released.

   If a response to the Release Request message is not received, the MGC
   MAY resend the Release Request message.  If no response is received,
   the MGC can consider the data link as being released.  In this case,
   signaling traffic on that D channel is not expected from the SG and
   signaling traffic will not be sent to the SG for that D channel.

   The Release messages contain the common message header followed by
   IUA message header.  The Release confirm message is in response to a
   Release Request message and it does not contain any additional
   parameters.  The Release Request and Indication messages contain the
   following parameter:

     REASON

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0xf)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                              Reason                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The valid values for Reason are shown in the following table.

      Define     Value           Description
   RELEASE_MGMT   0x0     Management layer generated release.
   RELEASE_PHYS   0x1     Physical layer alarm generated release.
   RELEASE_DM     0x2     Specific to a request.  Indicates Layer 2
                          SHOULD release and deny all requests from
                          far end to establish a data link on the
                          signaling channel (i.e., if SABME is
                          received send a DM)
   RELEASE_OTHER  0x3     Other reasons

   Note:  Only RELEASE_MGMT, RELEASE_DM and RELEASE_OTHER are valid
   reason codes for a Release Request message.

3.3.1.3 Data Messages (Request, Indication)

   The Data message contains an ISDN Q.921-User Protocol Data Unit (PDU)
   corresponding to acknowledged information transfer service.

Morneault, et al.           Standards Track                    [Page 23]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   The Data messages contain the common message header followed by IUA
   message header.  The Data message contains the following parameters:

     PROTOCOL DATA

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0xe)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                          Protocol Data                        |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The protocol data contains upper layer signaling message e.g.  Q.931,
   QSIG.

3.3.1.4 Unit Data Messages (Request, Indication)

   The Unit Data message contains an ISDN Q.921-User Protocol Data Unit
   (PDU) corresponding to unacknowledged information transfer service.

   The Unit Data messages contain the common message header followed by
   IUA message header.  The Unit Data message contains the following
   parameters

     PROTOCOL DATA

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0xe)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                          Protocol Data                        |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.3.2  Application Server Process Maintenance (ASPM) Messages

   The ASPM messages will only use the common message header.

3.3.2.1  ASP Up (ASPUP)

   The ASP Up (ASPUP) message is sent by an ASP to indicate to an SG
   that it is ready to receive traffic or maintenance messages.

Morneault, et al.           Standards Track                    [Page 24]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   The ASPUP message contains the following parameters:

     Info String (optional)

   The format for ASPUP Message parameters is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0x4)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                          INFO String*                         |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The optional INFO String parameter can carry any meaningful 8-bit
   ASCII character string along with the message.  Length of the INFO
   String parameter is from 0 to 255 characters.  No procedures are
   presently identified for its use but the INFO String MAY be used for
   debugging purposes.

3.3.2.2 ASP Up Ack

   The ASP Up Ack message is used to acknowledge an ASP Up message
   received from a remote IUA peer.

   The ASPUP Ack message contains the following parameters:

      INFO String (optional)

   The format for ASPUP Ack Message parameters is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0x4)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                          INFO String*                         |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The format and description of the optional Info String parameter is
   the same as for the ASP Up message (See Section 3.3.3.1).

Morneault, et al.           Standards Track                    [Page 25]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

3.3.2.3  ASP Down (ASPDN)

   The ASP Down (ASPDN) message is sent by an ASP to indicate to an SG
   that it is NOT ready to receive traffic or maintenance messages.

   The ASPDN message contains the following parameters:

      Reason
      INFO String (Optional)

   The format for the ASPDN message parameters is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0xa)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                              Reason                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0x4)           |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                         INFO String*                          |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The format and description of the optional Info String parameter is
   the same as for the ASP Up message (See Section 3.3.3.1.).

   The Reason parameter indicates the reason that the remote IUA
   adaptation layer is unavailable.  The valid values for Reason are
   shown in the following table.

      Value         Description
      0x1          Management Inhibit

   If a ASP is removed from Management Inhibit, the ASP will send an ASP
   Up message.

3.3.2.4  ASP Down Ack

   The ASP Down Ack message is used to acknowledge an ASP Down message
   received from a remote IUA peer.

   The ASP Down Ack message contains the following parameters:

      Reason
      INFO String (Optional)

Morneault, et al.           Standards Track                    [Page 26]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   The format for the ASP Down Ack message parameters is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0xa)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                              Reason                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0x4)           |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                         INFO String*                          |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The format and description of the optional Info String parameter is
   the same as for the ASP Up message (See Section 3.3.2.1.).

   The format of the Reason parameter is the same as for the ASP Down
   message (See Section 3.3.2.3).

3.3.2.5  ASP Active (ASPAC)

   The ASPAC message is sent by an ASP to indicate to an SG that it is
   Active and ready to be used.

   The ASPAC message contains the following parameters

      Traffic Mode Type (Mandatory)
      Interface Identifier (Optional)
         - Combination of integer and integer ranges, OR
         - string (text formatted)
      INFO String (Optional)

Morneault, et al.           Standards Track                    [Page 27]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   The format for the ASPAC message using integer formatted Interface
   Identifiers is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0xb)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Traffic Mode Type                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Tag (0x1=integer)         |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                     Interface Identifiers*                    |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Tag (0x8=integer range)    |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Interface Identifier Start1*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Interface Identifier Stop1*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Interface Identifier Start2*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Interface Identifier Stop2*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           .                                                           .
           .                                                           .
           .                                                           .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Interface Identifier StartN*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Interface Identifier StopN*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |              Additional Interface Identifiers                 |
   |                    of Tag Type 0x1 or 0x8                     |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Tag (0x4)             |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                          INFO String*                         |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Morneault, et al.           Standards Track                    [Page 28]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   The format for the ASPAC message using text formatted (string)
   Interface Identifiers is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0xb)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Traffic Mode Type                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Tag (0x3=string)        |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                     Interface Identifier*                     |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |              Additional Interface Identifiers                 |
   |                        of Tag Type 0x3                        |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Tag (0x4)             |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                          INFO String*                         |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The Traffic Mode Type parameter identifies the traffic mode of
   operation of the ASP within an AS.  The valid values for Type are
   shown in the following table:

     Value          Description
      0x1            Over-ride
      0x2            Load-share

   Within a particular Interface Identifier, only one Traffic Mode Type
   can be used.  The Over-ride value indicates that the ASP is operating
   in Over-ride mode, where the ASP takes over all traffic in an
   Application Server (i.e., primary/back-up operation), over-riding any
   currently active ASPs in the AS.  In Load-share mode, the ASP will
   share in the traffic distribution with any other currently active
   ASPs.

   The optional Interface Identifiers parameter contains a list of
   Interface Identifier integers (Type 0x1 or Type 0x8) or text strings
   (Type 0x3) indexing the Application Server traffic that the sending
   ASP is configured/registered to receive.  If integer formatted

Morneault, et al.           Standards Track                    [Page 29]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   Interface Identifiers are being used, the ASP can also send ranges of
   Interface Identifiers (Type 0x8).  Interface Identifier types Integer
   (0x1) and Integer Range (0x8) are allowed in the same message.  Text
   formatted Interface Identifiers (0x3) cannot be used with either
   Integer (0x1) or Integer Range (0x8) types.

   If no Interface Identifiers are included, the message is for all
   provisioned Interface Identifiers within the AS(s) in which the ASP
   is provisioned.  If only a subset of Interface Identifiers are
   included, the ASP is noted as Active for all the Interface
   Identifiers provisioned for that AS.

   Note:  If the optional Interface Identifier parameter is present, the
   integer formatted Interface Identifier MUST be supported, while the
   text formatted Interface Identifier MAY be supported.

   The format and description of the optional Info String parameter is
   the same as for the ASP Up message (See Section 3.3.2.1.).

   An SG that receives an ASPAC with an incorrect Traffic Mode Type for
   a particular Interface Identifier will respond with an Error Message
   (Cause: Unsupported Traffic Handling Mode).

3.3.2.6 ASP Active Ack

   The ASPAC Ack message is used to acknowledge an ASP-Active message
   received from a remote IUA peer.

   The ASPAC Ack message contains the following parameters:

      Traffic Mode Type (Mandatory)
      Interface Identifier (Optional)
         - Combination of integer and integer ranges, OR
         - string (text formatted)
      INFO String (Optional)

Morneault, et al.           Standards Track                    [Page 30]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   The format for the ASPAC Ack message with Integer-formatted Interface
   Identifiers is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0xb)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                      Traffic Mode Type                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Tag (0x1=integer)         |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                     Interface Identifiers*                    |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Tag (0x8=integer range)    |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Interface Identifier Start1*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Interface Identifier Stop1*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Interface Identifier Start2*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Interface Identifier Stop2*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           .                                                           .
           .                                                           .
           .                                                           .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Interface Identifier StartN*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Interface Identifier StopN*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |              Additional Interface Identifiers                 |
   |                    of Tag Type 0x1 or 0x8                     |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Tag (0x4)             |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                          INFO String*                         |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Morneault, et al.           Standards Track                    [Page 31]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   The format for the ASP Active Ack message using text formatted
   (string) Interface Identifiers is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0xb)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Traffic Mode Type                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Tag (0x3=string)        |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                     Interface Identifier*                     |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |              Additional Interface Identifiers                 |
   |                        of Tag Type 0x3                        |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Tag (0x4)             |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                          INFO String*                         |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The format of the Traffic Mode Type and Interface Identifier
   parameters is the same as for the ASP Active message (See Section
   3.3.2.5).

   The format and description of the optional Info String parameter is
   the same as for the ASP Up message (See Section 3.3.2.1.).

3.3.2.7  ASP Inactive (ASPIA)

   The ASPIA message is sent by an ASP to indicate to an SG that it is
   no longer an active ASP to be used from within a list of ASPs.  The
   SG will respond with an ASPIA Ack message and either discard incoming
   messages or buffer for a timed period and then discard.

   The ASPIA message contains the following parameters

      Traffic Mode Type (Mandatory)
      Interface Identifiers (Optional)
         - Combination of integer and integer ranges, OR
         - string (text formatted)

Morneault, et al.           Standards Track                    [Page 32]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

      INFO String (Optional)

   The format for the ASP Inactive message parameters using Integer
   formatted Interface Identifiers is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0xb)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Traffic Mode Type                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Tag (0x1=integer)         |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                     Interface Identifiers*                    |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Tag (0x8=integer range)    |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Interface Identifier Start1*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Interface Identifier Stop1*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Interface Identifier Start2*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Interface Identifier Stop2*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           .                                                           .
           .                                                           .
           .                                                           .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Interface Identifier StartN*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Interface Identifier StopN*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |              Additional Interface Identifiers                 |
   |                    of Tag Type 0x1 or 0x8                     |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0x4)           |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                          INFO String*                         |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Morneault, et al.           Standards Track                    [Page 33]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   The format for the ASP Inactive message using text formatted (string)
   Interface Identifiers is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0xb)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Traffic Mode Type                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Tag (0x3=string)        |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                     Interface Identifier*                     |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |              Additional Interface Identifiers                 |
   |                        of Tag Type 0x3                        |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Tag (0x4)             |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                          INFO String*                         |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The Traffic Mode Type parameter identifies the traffic mode of
   operation of the ASP within an AS.  The valid values for Traffic Mode
   Type are shown in the following table:

      Value          Description
       0x1            Over-ride
       0x2            Load-share

   The format and description of the optional Interface Identifiers and
   Info String parameters is the same as for the ASP Active message (See
   Section 3.3.2.3.).

   The optional Interface Identifiers parameter contains a list of
   Interface Identifier integers or text strings indexing the
   Application Server traffic that the sending ASP is
   configured/registered to receive, but does not want to receive at
   this time.

Morneault, et al.           Standards Track                    [Page 34]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

3.3.2.8  ASP Inactive Ack

   The ASP Inactive (ASPIA) Ack message is used to acknowledge an ASP
   Inactive message received from a remote IUA peer.

   The ASPIA Ack message contains the following parameters:

      Traffic Mode Type (Mandatory)
      Interface Identifiers (Optional)
         - Combination of integer and integer ranges, OR
         - string (text formatted)
      INFO String (Optional)

Morneault, et al.           Standards Track                    [Page 35]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0xb)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Traffic Mode Type                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Tag (0x1=integer)         |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                     Interface Identifiers*                    |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Tag (0x8=integer range)    |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Interface Identifier Start1*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Interface Identifier Stop1*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Interface Identifier Start2*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Interface Identifier Stop2*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           .                                                           .
           .                                                           .
           .                                                           .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Interface Identifier StartN*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Interface Identifier StopN*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |              Additional Interface Identifiers                 |
   |                    of Tag Type 0x1 or 0x8                     |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Tag (0x4)             |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                          INFO String*                         |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Morneault, et al.           Standards Track                    [Page 36]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   The format for the ASP Inactive Ack message using text formatted
   (string) Interface Identifiers is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0xb)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Traffic Mode Type                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Tag (0x3=string)        |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                     Interface Identifier*                     |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |              Additional Interface Identifiers                 |
   |                        of Tag Type 0x3                        |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Tag (0x4)             |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                          INFO String*                         |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The format of the Traffic Mode Type and Interface Identifier
   parameters is the same as for the ASP Inactive message (See Section
   3.3.2.7).

   The format and description of the optional Info String parameter is
   the same as for the ASP Up message (See Section 3.3.2.1).

3.3.2.9  Heartbeat (BEAT)

   The Heartbeat message is optionally used to ensure that the IUA peers
   are still available to each other.  It is recommended for use when
   the IUA runs over a transport layer other than the SCTP, which has
   its own heartbeat.

   The BEAT message contains the following parameters:

      Heartbeat Data         Optional

Morneault, et al.           Standards Track                    [Page 37]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   The format for the BEAT message is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            Tag = 9            |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   \                                                               \
   |                       Heartbeat Data *                        |
   \                                                               \
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The Heartbeat Data parameter contents are defined by the sending
   node. The Heartbeat Data could include, for example, a Heartbeat
   Sequence Number and, or Timestamp.  The receiver of a Heartbeat
   message does not process this field as it is only of significance to
   the sender. The receiver MUST respond with a Heartbeat Ack message.

3.3.2.10  Heartbeat Ack (BEAT-Ack)

   The Heartbeat Ack message is sent in response to a received Heartbeat
   message.  It includes all the parameters of the received Heartbeat
   message, without any change.

3.3.3  Layer Management (MGMT) Messages

3.3.3.1  Error (ERR)

   The Error message is used to notify a peer of an error event
   associated with an incoming message.  For example, the message type
   might be unexpected given the current state, or a parameter value
   might be invalid.

   The Error message will only have the common message header.  The
   Error message contains the following parameters:

      Error Code
      Diagnostic Information (optional)

Morneault, et al.           Standards Track                    [Page 38]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0xc)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          Error Code                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0x7)           |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                     Diagnostic Information*                   |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The Error Code parameter indicates the reason for the Error Message.
   The Error parameter value can be one of the following values:

      Invalid Version                               0x01
      Invalid Interface Identifier                  0x02
      Unsupported Message Class                     0x03
      Unsupported Message Type                      0x04
      Unsupported Traffic Handling Mode             0x05
      Unexpected Message                            0x06
      Protocol Error                                0x07
      Unsupported Interface Identifier Type         0x08
      Invalid Stream Identifier                     0x09
      Unassigned TEI                                0x0a
      Unrecognized SAPI                             0x0b
      Invalid TEI, SAPI combination                 0x0c

   The "Invalid Version" error would be sent if a message was received
   with an invalid or unsupported version.  The Error message would
   contain the supported version in the Common header.  The Error
   message could optionally provide the supported version in the
   Diagnostic Information area.

   The "Invalid Interface Identifier" error would be sent by a SG if an
   ASP sends a message with an invalid (unconfigured) Interface
   Identifier value.

   The "Unsupported Traffic Handling Mode" error would be sent by a SG
   if an ASP sends an ASP Active with an unsupported Traffic Handling
   Mode.  An example would be a case in which the SG did not support
   load-sharing.

   The "Unexpected Message" error would be sent by an ASP if it received
   a QPTM message from an SG while it was in the Inactive state (the ASP
   could optionally drop the message and not send an Error).  It would

Morneault, et al.           Standards Track                    [Page 39]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   also be sent by an ASP if it received a defined and recognized
   message that the SG is not expected to send (e.g., if the MGC
   receives an IUA Establish Request message).

   The "Protocol Error" error would be sent for any protocol anomaly
   (i.e., a bogus message).

   The "Invalid Stream Identifier" error would be sent if a message was
   received on an unexpected SCTP stream (i.e., a MGMT message was
   received on a stream other than "0").

   The "Unsupported Interface Identifier Type" error would be sent by a
   SG if an ASP sends a Text formatted Interface Identifier and the SG
   only supports Integer formatted Interface Identifiers.  When the ASP
   receives this error, it will need to resend its message with an
   Integer formatted Interface Identifier.

   The "Unsupported Message Type" error would be sent if a message with
   an unexpected or unsupported Message Type is received.

   The "Unsupported Message Class" error would be sent if a message with
   an unexpected or unsupported Message Class is received.

   The "Unassigned TEI" error may be used when the SG receives an IUA
   message that includes a TEI which has not been assigned or recognized
   for use on the indicated ISDN D-channel.

   The "Unrecognized SAPI" error would handle the case of using a SAPI
   that is not recognized by the SG.  The "Invalid TEI, SAPI
   combination" error identify errors where the TEI is assigned and the
   the SAPI is recognized, but the combination is not valid for the
   interface (e.g., on a BRI the MGC tries to send Q.921 Management
   messages via IUA when Layer Management at the SG SHOULD be performing
   this function).

   The optional Diagnostic information can be any information germane to
   the error condition, to assist in identification of the error
   condition.  To enhance debugging, the Diagnostic information could
   contain the first 40 bytes of the offending message.

3.3.3.2  Notify (NTFY)

   The Notify message used to provide an autonomous indication of IUA
   events to an IUA peer.

Morneault, et al.           Standards Track                    [Page 40]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   The Notify message will only use the common message header.  The
   Notify message contains the following parameters:

      Status Type
      Status Identification
      Interface Identifiers (Optional)
      INFO String (Optional)

Morneault, et al.           Standards Track                    [Page 41]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   The format for the Notify message with Integer-formatted Interface
   Identifiers is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0xd)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |        Status Type            |    Status Identification      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Tag (0x1=integer)         |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                     Interface Identifiers*                    |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Tag (0x8=integer range)    |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Interface Identifier Start1*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Interface Identifier Stop1*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Interface Identifier Start2*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Interface Identifier Stop2*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           .                                                           .
           .                                                           .
           .                                                           .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Interface Identifier StartN*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Interface Identifier StopN*                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |              Additional Interface Identifiers                 |
   |                    of Tag Type 0x1 or 0x8                     |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Tag (0x4)             |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                          INFO String*                         |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Morneault, et al.           Standards Track                    [Page 42]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   The format for the Notify message with Text-formatted Interface
   Identifiers is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Tag (0xd)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |        Status Type            |    Status Identification      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Tag (0x3=string)        |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                     Interface Identifier*                     |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |              Additional Interface Identifiers                 |
   |                        of Tag Type 0x3                        |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Tag (0x4)             |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                          INFO String*                         |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The Status Type parameter identifies the type of the Notify message.
   The following are the valid Status Type values:

      Value          Description
       0x1   Application Server state change (AS_State_Change)
       0x2   Other

   The Status Identification parameter contains more detailed
   information for the notification, based on the value of the Status
   Type.  If the Status Type is AS_State_Change the following Status
   Identification values are used:

      Value          Description
        1    Application Server Down (AS_Down)
        2    Application Server Inactive (AS_Inactive)
        3    Application Server Active (AS_Active)
        4    Application Server Pending (AS_Pending)

Morneault, et al.           Standards Track                    [Page 43]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   These notifications are sent from an SG to an ASP upon a change in
   status of a particular Application Server.  The value reflects the
   new state of the Application Server.

   If the Status Type is Other, then the following Status Information
   values are defined:

      Value          Description
        1    Insufficient ASP resources active in AS
        2    Alternate ASP Active

   These notifications are not based on the SG reporting the state
   change of an ASP or AS.  In the Insufficient ASP Resources case, the
   SG is indicating to an "Inactive" ASP(s) in the AS that another ASP
   is required in order to handle the load of the AS (Load-sharing
   mode). For the Alternate ASP Active case, an ASP is informed when an
   alternate ASP transitions to the ASP-Active state in Over-ride mode.

   The format and description of the optional Interface Identifiers and
   Info String parameters is the same as for the ASP Active message (See
   Section 3.3.2.3.).

3.3.3.3 TEI Status Messages (Request, Confirm and Indication)

   The TEI Status messages are exchanged between IUA layer peers to
   request, confirm and indicate the status of a particular TEI.

   The TEI Status messages contain the common message header followed by
   IUA message header.  The TEI Status Request message does not contain
   any additional parameters.

   In the integrated ISDN Layer 2/3 model (e.g., in traditional ISDN
   switches), it is assumed that the Layer Management for the Q.921
   Layer and the Q.931 layer are co-located.  When backhauling ISDN,
   this assumption is not necessarily valid.  The TEI status messages
   allow the two Layer Management entities to communicate the status of
   the TEI.  In addition, knowing that a TEI is in service allows the
   ASP to request the SG to establish the datalink to the terminal (via
   the IUA Establish message) for signaling if the ASP wants to be in
   control of data link establishment.  Another use of the TEI status
   procedure is where the Layer Management at the ASP can prepare for
   send/receive signaling to/from a given TEI and confirm/verify the
   establishment of a datalink to that TEI.  For example, if a datalink
   is established for a TEI that the ASP did not know was assigned, the
   ASP can check to see whether it was assigned or whether there was an
   error in the signaling message.  Also, knowing that a TEI is out of
   service, the ASP need not request the SG to establish a datalink to
   that TEI.

Morneault, et al.           Standards Track                    [Page 44]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   The TEI Status Indication, and Confirm messages contain the following
   parameter:

     STATUS

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Tag (0x10)           |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                              Status                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The valid values for Status are shown in the following table.

      Define     Value           Description
   ASSIGNED       0x0        TEI is considered assigned by Q.921
   UNASSIGNED     0x1        TEI is considered unassigned by Q.921

4.0  Procedures

   The IUA layer needs to respond to various primitives it receives from
   other layers as well as messages it receives from the peer IUA layer.
   This section describes various procedures involved in response to
   these events.

4.1  Procedures to support service in section 1.4.1

   These procedures achieve the IUA layer's "Transport of Q.921/Q.931
   boundary" service.

4.1.1  Q.921 or Q.931 primitives procedures

   On receiving these primitives from the local layer, the IUA layer
   will send the corresponding QPTM message (Data, Unit Data, Establish,
   Release) to its peer.  While doing so, the IUA layer needs to fill
   various fields of the common and specific headers correctly.  In
   addition the message needs to be sent on the SCTP stream that
   corresponds to the D channel (Interface Identifier).

4.1.2  QPTM message procedures

   On receiving QPTM messages from a peer IUA layer, the IUA layer on an
   SG or MGC needs to invoke the corresponding layer primitives (DL-
   ESTABLISH, DL-DATA, DL-UNIT DATA, DL-RELEASE) to the local Q.921 or
   Q.931 layer.

Morneault, et al.           Standards Track                    [Page 45]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

4.2  Procedures to support service in section 1.4.2

   These procedures achieve the IUA layer's "Support for Communication
   between Layer Managements" service.

4.2.1 Layer Management primitives procedures

   On receiving these primitives from the local Layer Management, the
   IUA layer will provide the appropriate response primitive across the
   internal local Layer Management interface.

   An M-SCTP ESTABLISH request from Layer Management will initiate the
   establishment of an SCTP association.  An M-SCTP ESTABLISH confirm
   will be sent to Layer Management when the initiated association set-
   up is complete.  An M-SCTP ESTABLISH indication is sent to Layer
   Management upon successful completion of an incoming SCTP association
   set-up from a peer IUA node

   An M-SCTP RELEASE request from Layer Management will initiate the
   tear-down of an SCTP association.  An M-SCTP RELEASE confirm will be
   sent by Layer Management when the association teardown is complete.
   An M-SCTP RELEASE indication is sent to Layer Management upon
   successful tear-down of an SCTP association initiated by a peer IUA.

   M-SCTP STATUS request and indication support a Layer Management query
   of the local status of a particular SCTP association.

   M-NOTIFY indication and M-ERROR indication indicate to Layer
   Management the notification or error information contained in a
   received IUA Notify or Error message respectively.  These indications
   can also be generated based on local IUA events.

   M-ASP STATUS request/indication and M-AS-STATUS request/indication
   support a Layer Management query of the local status of a particular
   ASP or AS.  No IUA peer protocol is invoked.

   M-ASP-UP request, M-ASP-DOWN request, M-ASP-INACTIVE request and M-
   ASP-ACTIVE request allow Layer Management at an ASP to initiate state
   changes.  These requests result in outgoing IUA ASP UP, ASP DOWN, ASP
   INACTIVE and ASP ACTIVE messages.

   M-ASP-UP confirmation, M-ASP-DOWN confirmation, M-ASP-INACTIVE
   confirmation and M-ASP-ACTIVE confirmation indicate to Layer
   Management that the previous request has been confirmed.

Morneault, et al.           Standards Track                    [Page 46]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   Upon receipt of a M-TEI Status primitive from Layer Management, the
   IUA will send the corresponding MGMT message (TEI Status) to its
   peer.  While doing so, the IUA layer needs to fill various fields of
   the common and specific headers correctly.

   All MGMT messages are sent on a sequenced stream to ensure ordering.
   SCTP stream '0' SHOULD be used.

4.2.2  Receipt of IUA Peer Management messages

   Upon receipt of IUA Management messages, the IUA layer MUST invoke
   the corresponding Layer Management primitive indications (e.g., M-AS
   Status ind., M-ASP Status ind., M-ERROR ind., M-TEI STATUS...) to the
   local layer management.

   M-NOTIFY indication and M-ERROR indication indicate to Layer
   Management the notification or error information contained in a
   received IUA Notify or Error message.  These indications can also be
   generated based on local IUA events.

   All MGMT messages are sent on a sequenced stream to ensure ordering.
   SCTP stream '0' SHOULD be used.

4.3 Procedures to support service in section 1.4.3

   These procedures achieve the IUA layer's "Support for management of
   active associations between SG and MGC" service.

4.3.1 AS and ASP State Maintenance

   The IUA layer on the SG needs to maintain the states of each ASP as
   well as the state of the AS.

4.3.1.1  ASP States

   The state of the each ASP, in each AS that it is configured, is
   maintained in the IUA layer on the SG.  The state of an ASP changes
   due to the following type of events:

      *  Reception of messages from peer IUA layer at that ASP
      *  Reception of some messages from the peer IUA layer at other
         ASPs in the AS
      *  Reception of indications from SCTP layer

   The ASP state transition diagram is shown in Figure 7.  The possible
   states of an ASP are the following:

Morneault, et al.           Standards Track                    [Page 47]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   ASP-DOWN: Application Server Process is unavailable and/or the
   related SCTP association is down.  Initially, all ASPs will be in
   this state. An ASP in this state SHOULD NOT be sent any IUA messages.

   ASP-INACTIVE: The remote IUA peer at the ASP is available (and the
   related SCTP association is up) but application traffic is stopped.
   In this state the ASP can be sent any non-QPTM IUA messages (except
   for TEI Status messages).

   ASP-ACTIVE: The remote IUA peer at the ASP is available and
   application traffic is active.

                   Figure 7  ASP State Transition Diagram

                                    +-------------+
             +----------------------|             |
             |   Alternate  +-------| ASP-ACTIVE  |
             |       ASP    |       +-------------+
             |    Takeover  |           ^     |
             |              |    ASP    |     | ASP
             |              |    Active |     | Inactive
             |              |           |     v
             |              |       +-------------+
             |              |       |             |
             |              +------>|  ASP-INACT  |
             |                      +-------------+
             |                          ^    |
   ASP Down/ |                     ASP  |    | ASP Down /
   SCTP CDI  |                     Up   |    | SCTP CDI
             |                          |    v
             |                      +-------------+
             +--------------------->|             |
                                    |  ASP-DOWN   |
                                    +-------------+

   SCTP CDI:  The local SCTP layer's Communication Down Indication to
   the Upper Layer Protocol (IUA) on an SG.  The local SCTP will send
   this indication when it detects the loss of connectivity to the ASP's
   peer SCTP layer.  SCTP CDI is understood as either a SHUTDOWN
   COMPLETE notification and COMMUNICATION LOST notification from the
   SCTP.

4.3.1.2  AS States

   The state of the AS is maintained in the IUA layer on the SG.

   The state of an AS changes due to events.  These events include the
   following:

Morneault, et al.           Standards Track                    [Page 48]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

      *  ASP state transitions
      *  Recovery timer triggers

   The possible states of an AS are the following:

   AS-DOWN: The Application Server is unavailable.  This state implies
   that all related ASPs are in the ASP-DOWN state for this AS.
   Initially the AS will be in this state.

   AS-INACTIVE: The Application Server is available but no application
   traffic is active (i.e., one or more related ASPs are in the ASP-
   INACTIVE state, but none in the ASP-ACTIVE state).  The recovery
   timer T(r) is not running or has expired.

   AS-ACTIVE: The Application Server is available and application
   traffic is active.  This state implies that at least one ASP is in
   the ASP-ACTIVE state.

   AS-PENDING: An active ASP has transitioned from active to inactive or
   down and it was the last remaining active ASP in the AS.  A recovery
   timer T(r) will be started and all incoming SCN messages will be
   queued by the SG.  If an ASP becomes active before T(r) expires, the
   AS will move to AS-ACTIVE state and all the queued messages will be
   sent to the active ASP.

   If T(r) expires before an ASP becomes active, the SG stops queuing
   messages and  discards all previously queued messages.  The AS will
   move to AS-INACTIVE if at least one ASP is in ASP-INACTIVE state,
   otherwise it will move to AS-DOWN state.

Morneault, et al.           Standards Track                    [Page 49]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

                 Figure 8  AS State Transition Diagram

        +----------+  one ASP trans ACTIVE   +-------------+
        |          |------------------------>|             |
        | AS-INACT |                         |  AS-ACTIVE  |
        |          |                         |             |
        |          |<                        |             |
        +----------+ \                       +-------------+
           ^   |      \ Tr Trigger                ^    |
           |   |       \ at least one             |    |
           |   |        \ ASP in UP               |    |
           |   |         \                        |    |
           |   |          \                       |    |
           |   |           \                      |    |
   one ASP |   |            \            one ASP  |    | Last ACTIVE ASP
   trans   |   | all ASP     \------\    trans to |    | trans to INACT
   to      |   | trans to            \   ACTIVE   |    | or DOWN
   INACT   |   | DOWN                 \           |    | (start Tr timer)
           |   |                       \          |    |
           |   |                        \         |    |
           |   |                         \        |    |
           |   v                          \       |    v
        +----------+                       \ +-------------+
        |          |                        -|             |
        | AS-DOWN  |                         | AS-PENDING  |
        |          |                         |  (queueing) |
        |          |<------------------------|             |
        +----------+    Tr Expiry and no     +-------------+
                       ASP in INACTIVE state

      Tr = Recovery Timer

4.3.2 ASPM procedures for primitives

   Before the establishment of an SCTP association the ASP state at both
   the SG and ASP is assumed to be "Down".

   As the ASP is responsible for initiating the setup of an SCTP
   association to an SG, the IUA layer at an ASP receives an M-SCTP
   ESTABLISH request primitive from the Layer Management, the IUA layer
   will try to establish an SCTP association with the remote IUA peer at
   an SG.  Upon reception of an eventual SCTP-Communication Up confirm
   primitive from the SCTP, the IUA layer will invoke the primitive M-
   SCTP ESTABLISH confirm to the Layer Management.

   At the SG, the IUA layer will receive an SCTP Communication Up
   indication primitive from the SCTP.  The IUA layer will then invoke
   the primitive M-SCTP ESTABLISH indication to the Layer Management.

Morneault, et al.           Standards Track                    [Page 50]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   Once the SCTP association is established and assuming that the local
   IUA-User is ready, the local ASP IUA Application Server Process
   Maintenance (ASPM) function will initiate the ASPM procedures, using
   the ASP Up/-Down/-Active/-Inactive messages to convey the ASP state
   to the SG - see Section 4.3.3.

   The Layer Management and the IUA layer on SG can communicate the
   status of the application server using the M-AS STATUS primitives.
   The Layer Management and the IUA layer on both the SG and ASP can
   communicate the status of an SCTP association using the M-SCTP STATUS
   primitives.

   If the Layer Management on SG or ASP wants to bring down an SCTP
   association for management reasons, they would send M-SCTP RELEASE
   request primitive to the local IUA layer.  The IUA layer would
   release the SCTP association and upon receiving the SCTP
   Communication Down indication from the underlying SCTP layer, it
   would inform the local Layer Management using M-SCTP RELEASE confirm
   primitive.

   If the IUA layer receives an SCTP-Communication Down indication from
   the underlying SCTP layer, it will inform the Layer Management by
   invoking the M-SCTP RELEASE indication primitive.  The state of the
   ASP will be moved to "Down" at both the SG and ASP.

   At an ASP, the Layer Management MAY try to reestablish the SCTP
   association using M-SCTP ESTABLISH request primitive.

4.3.3 ASPM procedures for peer-to-peer messages

   All ASPM messages are sent on a sequenced stream to ensure ordering.
   SCTP stream '0' SHOULD be used.

4.3.3.1 ASP Up

   After an ASP has successfully established an SCTP association to an
   SG, the SG waits for the ASP to send an ASP Up message, indicating
   that the ASP IUA peer is available.  The ASP is always the initiator
   of the ASP Up exchange.

   When an ASP Up message is received at an SG and internally the remote
   ASP is not considered locked-out for local management reasons, the SG
   marks the remote ASP as "Inactive".  The SG responds with an ASP Up
   Ack message in acknowledgement.  The SG sends an ASP-Up Ack message
   in response to a received ASP Up message even if the ASP is already
   marked as "Inactive" at the SG.

Morneault, et al.           Standards Track                    [Page 51]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   If for any local reason the SG cannot respond with an ASP Up, the SG
   responds to a ASP Up with a with an ASP-Down Ack message with Reason
   "Management Blocking".

   At the ASP, the ASP Up Ack message received from the SG is not
   acknowledged by the ASP.  If the ASP does not receive a response from
   the SG, or an ASP Down Ack is received, the ASP MAY resend ASP Up
   messages every 2 seconds until it receives a ASP Up Ack message from
   the SG.  The ASP MAY decide to reduce the frequency (say to every 5
   seconds) if an ASP Up Ack is not received after a few tries.

   The ASP MUST wait for the ASP Up Ack message from the SG before
   sending any ASP traffic control messages (ASPAC or ASPIA) or Data
   messages or it will risk message loss.  If the SG receives QPTM, ASP
   Active or ASP Inactive messages before an ASP Up is received, the SG
   SHOULD discard these messages.

4.3.3.2 ASP Down

   The ASP will send an ASP Down to an SG when the ASP is to be removed
   from the list of ASPs in all Application Servers that it is a member
   and no longer receive any IUA traffic or management messages.

   Whether the ASP is permanently removed from an AS is a function of
   configuration management.

   The SG marks the ASP as "Down" and returns an ASP Down Ack message to
   the ASP if one of the following events occur:

      -  to acknowledge an ASP Down message from an ASP,
      -  to reply to ASPM messages from an ASP which is locked out for
         management reasons.

   The SG sends an ASP Down Ack message in response to a received ASP
   Down message from the ASP even if the ASP is already marked as "Down"
   at the SG.

   If the ASP does not receive a response from the SG, the ASP MAY send
   ASP Down messages every 2 seconds until it receives an ASP Down Ack
   message from the SG or the SCTP association goes down.  The ASP MAY
   decide to reduce the frequency (say to every 5 seconds) if an ASP
   Down Ack is not received after a few tries.

4.3.3.3 IUA Version Control

   If a ASP Up message with an unsupported version is received, the
   receiving end responds with an Error message, indicating the version
   the receiving node supports and notifies Layer Management.

Morneault, et al.           Standards Track                    [Page 52]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   This is useful when protocol version upgrades are being performed in
   a network.  A node upgraded to a newer version SHOULD support the
   older versions used on other nodes it is communicating with.  Because
   ASPs initiate the ASP Up procedure it is assumed that the Error
   message would normally come from the SG.

4.3.3.4 ASP Active

   Any time after the ASP has received a ASP Up Ack from the SG, the ASP
   sends an ASP-Active (ASPAC) to the SG indicating that the ASP is
   ready to start processing traffic.  In the case where an ASP is
   configured/registered to process the traffic for more than one
   Application Server across an SCTP association, the ASPAC contains one
   or more Interface Identifiers to indicate for which Application
   Servers the ASPAC applies.

   When an ASP Active (ASPAC) message is received, the SG responds to
   the ASP with a ASPAC Ack message acknowledging that the ASPAC was
   received and starts sending traffic for the associated Application
   Server(s) to that ASP.

   The ASP MUST wait for the ASP-Active Ack message from the SG before
   sending any Data messages or it will risk message loss.  If the SG
   receives QPTM messages before an ASP Active is received, the SG
   SHOULD discard these messages.

   There are two modes of Application Server traffic handling in the SG
   IUA - Over-ride and Load-sharing.  The Type parameter in the ASPAC
   message indicates the mode used in a particular Application Server.
   If the SG determines that the mode indicates in an ASPAC is
   incompatible with the traffic handling mode currently used in the AS,
   the SG responds with an Error message indicating Unsupported Traffic
   Handling Mode.

   In the case of an Over-ride mode AS, reception of an ASPAC message at
   an SG causes the redirection of all traffic for the AS to the ASP
   that sent the ASPAC.  The SG responds to the ASPAC with an ASP-Active
   Ack message to the ASP.  Any previously active ASP in the AS is now
   considered Inactive and will no longer receive traffic from the SG
   within the AS.  The SG sends a Notify (Alternate ASP-Active) to the
   previously active ASP in the AS, after stopping all traffic to that
   ASP.

   In the case of a load-share mode AS, reception of an ASPAC message at
   an SG causes the direction of traffic to the ASP sending the ASPAC,
   in addition to all the other ASPs that are currently active in the
   AS. The algorithm at the SG for load-sharing traffic within an AS to
   all the active ASPs is implementation dependent.  The algorithm

Morneault, et al.           Standards Track                    [Page 53]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   could, for example be round-robin or based on information in the Data
   message, such as Interface Identifier, depending on the requirements
   of the application and the call state handling assumptions of the
   collection of ASPs in the AS.  The SG responds to the ASPAC with a
   ASP-Active Ack message to the ASP.

4.3.3.5 ASP Inactive

   When an ASP wishes to withdraw from receiving traffic within an AS,
   the ASP sends an ASP Inactive (ASPIA) to the SG.  In the case where
   an ASP is configured/registered to process the traffic for more than
   one Application Server across an SCTP association, the ASPIA contains
   one or more Interface Identifiers to indicate for which Application
   Servers the ASPIA applies.

   There are two modes of Application Server traffic handling in the SG
   IUA when withdrawing an ASP from service - Over-ride and Load-
   sharing. The Type parameter in the ASPIA message indicates the mode
   used in a particular Application Server.  If the SG determines that
   the mode indicates in an ASPAC is incompatible with the traffic
   handling mode currently used in the AS, the SG responds with an Error
   message indicating Unsupported Traffic Handling Mode.

   In the case of an Over-ride mode AS, where normally another ASP has
   already taken over the traffic within the AS with an Over-ride ASPAC,
   the ASP which sends the ASPIA is already considered by the SG to be
   "Inactive".  An ASPIA Ack message is sent to the ASP, after ensuring
   that all traffic is stopped to the ASP.

   In the case of a Load-share mode AS, the SG moves the ASP to the
   "Inactive" state and the AS traffic is re-allocated across the
   remaining "active" ASPs per the load-sharing algorithm currently used
   within the AS.  An ASPIA Ack message is sent to the ASP after all
   traffic is halted to the ASP.  A NTFY (Insufficient ASPs) MAY be sent
   to all inactive ASPs, if required.

   If no other ASPs are Active in the Application Server, the SG sends a
   NTFY (AS-Pending) to all inactive ASPs of the AS and either discards
   all incoming messages for the AS or starts buffering the incoming
   messages for T(r)seconds, after which messages will be discarded.
   T(r) is configurable by the network operator.  If the SG receives an
   ASPAC from an ASP in the AS before expiry of T(r), the buffered
   traffic is directed to the ASP and the timer is cancelled.  If T(r)
   expires, the AS is moved to the "Inactive" state.

Morneault, et al.           Standards Track                    [Page 54]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

4.3.3.6  Notify

   A Notify message reflecting a change in the AS state is sent to all
   ASPs in the AS, except those in the "Down" state, with appropriate
   Status Identification.

   In the case where a Notify (AS-Pending) message is sent by an SG that
   now has no ASPs active to service the traffic, or a NTFY
   (Insufficient ASPs) is sent in the Load-share mode, the Notify does
   not explicitly force the ASP(s) receiving the message to become
   active.  The ASPs remain in control of what (and when) action is
   taken.

4.3.3.7  Heartbeat

   The optional Heartbeat procedures MAY be used when operating over
   transport layers that do not have their own heartbeat mechanism for
   detecting loss of the transport association (i.e., other than the
   SCTP).

   After receiving an ASP Up Ack message from the SG in response to an
   ASP Up message, the ASP MAY optionally send Beat messages
   periodically, subject to a provisionable timer T(beat).  The SG IUA,
   upon receiving a BEAT message from the ASP, responds with a BEAT ACK
   message.  If no BEAT message (or any other IUA message) is received
   from the SG within the timer 2*T(beat), the SG will consider the
   remote IUA as "Down".  The SG will also send an ASP Down Ack message
   to the ASP.

   At the ASP, if no BEAT ACK message (or any other IUA message) is
   received from the SG within 2*T(beat), the SG is considered
   unavailable.  Transmission of BEAT messages is stopped and ASP Up
   procedures are used to re-establish communication with the SG IUA
   peer.

   The BEAT message MAY optionally contain an opaque Heartbeat Data
   parameter that MUST be echoed back unchanged in the related Beat Ack
   message.  The ASP upon examining the contents of the returned BEAT
   Ack message MAY choose to consider the remote ASP as unavailable.
   The contents/format of the Heartbeat Data parameter is
   implementation-dependent and only of local interest to the original
   sender.  The contents MAY be used, for example, to support a
   Heartbeat sequence algorithm (to detect missing Heartbeats), and/or a
   timestamp mechanism (to evaluate delays).

   Note:  Heartbeat related events are not shown in Figure 4 "ASP state
   transition diagram".

Morneault, et al.           Standards Track                    [Page 55]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

5.0 Examples

5.1 Establishment of Association and Traffic between SGs and ASPs

5.1.1 Single ASP in an Application Server (1+0 sparing)

   This scenario shows the example IUA message flows for the
   establishment of traffic between an SG and an ASP, where only one ASP
   is configured within an AS (no backup).  It is assumed that the SCTP
   association is already set-up.

                SG                       ASP1
                 |
                 |<---------ASP Up----------|
                 |--------ASP Up Ack------->|
                 |                          |
                 |<-------ASP Active--------|
                 |------ASP Active Ack----->|
                 |                          |

5.1.2 Two ASPs in Application Server (1+1 sparing)

   This scenario shows the example IUA message flows for the
   establishment of traffic between an SG and two ASPs in the same
   Application Server, where ASP1 is configured to be Active and ASP2 a
   standby in the event of communication failure or the withdrawal from
   service of ASP1.  ASP2 MAY act as a hot, warm, or cold standby
   depending on the extent to which ASP1 and ASP2 share call state or
   can communicate call state under failure/withdrawal events.  The
   example message flow is the same whether the ASP-Active messages are
   Over-ride or Load-share mode although typically this example would
   use an Over-ride mode.

          SG                        ASP1                        ASP2
           |                         |                          |
           |<--------ASP Up----------|                          |
           |-------ASP Up Ack------->|                          |
           |                         |                          |
           |<-----------------------------ASP Up----------------|
           |----------------------------ASP Up Ack------------->|
           |                         |                          |
           |                         |                          |
           |<-------ASP Active-------|                          |
           |-----ASP Active Ack----->|                          |
           |                         |                          |

Morneault, et al.           Standards Track                    [Page 56]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

5.1.3 Two ASPs in an Application Server (1+1 sparing, load-sharing case)

   This scenario shows a similar case to Section 5.1.2 but where the two
   ASPs are brought to active and load-share the traffic load.  In this
   case, one ASP is sufficient to handle the total traffic load.

          SG                       ASP1                       ASP2
           |                         |                          |
           |<---------ASP Up---------|                          |
           |--------ASP Up Ack------>|                          |
           |                         |                          |
           |<------------------------------ASP Up---------------|
           |-----------------------------ASP Up Ack------------>|
           |                         |                          |
           |                         |                          |
           |<--ASP Active (Ldshr)----|                          |
           |----ASP Active Ack------>|                          |
           |                         |                          |
           |<----------------------------ASP Active (Ldshr)-----|
           |-----------------------------ASP Active Ack-------->|
           |                         |                          |

5.1.4 Three ASPs in an Application Server (n+k sparing, load-sharing
      case)

   This scenario shows the example IUA message flows for the
   establishment of traffic between an SG and three ASPs in the same
   Application Server, where two of the ASPs are brought to active and
   share the load.  In this case, a minimum of two ASPs are required to
   handle the total traffic load (2+1 sparing).

Morneault, et al.           Standards Track                    [Page 57]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

      SG                  ASP1                ASP2                ASP3
       |                    |                   |                   |
       |<------ASP Up-------|                   |                   |
       |-----ASP Up Ack---->|                   |                   |
       |                    |                   |                   |
       |<--------------------------ASP Up-------|                   |
       |------------------------ASPUp Ack)----->|                   |
       |                    |                   |                   |
       |<---------------------------------------------ASP Up--------|
       |--------------------------------------------ASP Up Ack----->|
       |                    |                   |                   |
       |                    |                   |                   |
       |<-ASP Act (Ldshr)---|                   |                   |
       |----ASP Act Ack---->|                   |                   |
       |                    |                   |                   |
       |<---------------------ASP Act (Ldshr)---|                   |
       |----------------------ASP Act Ack------>|                   |
       |                    |                   |                   |

5.2 ASP Traffic Fail-over Examples

5.2.1 (1+1 Sparing, withdrawal of ASP, Back-up Over-ride)

   The following example shows a case in which an ASP withdraws from
   service:

          SG                       ASP1                       ASP2
           |                         |                          |
           |<-----ASP Inactive-------|                          |
           |----ASP Inactive Ack---->|                          |
           |-------------------NTFY(AS-Pending) --------------->|
           |                         |                          |
           |<------------------------------ ASP Active----------|
           |-----------------------------ASP Active Ack)------->|
           |                                                    |

   In this case, the SG notifies ASP2 that the AS has moved to the Down
   state.  The SG could have also (optionally) sent a Notify message
   when the AS moved to the Pending state.

   Note:  If the SG detects loss of the IUA peer (IUA heartbeat loss or
   detection of SCTP failure), the initial SG-ASP1 ASP Inactive message
   exchange would not occur.

5.2.2 (1+1 Sparing, Back-up Over-ride)

   The following example shows a case in which ASP2 wishes to over-ride
   ASP1 and take over the traffic:

Morneault, et al.           Standards Track                    [Page 58]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

          SG                       ASP1                       ASP2
           |                         |                          |
           |<-------------------------------ASP Active----------|
           |-----------------------------ASP Active Ack-------->|
           |----NTFY( Alt ASP-Act)-->|
           |                         |                          |

   In this case, the SG notifies ASP1 that an alternative ASP has
   overridden it.

5.2.3 (n+k Sparing, Load-sharing case, withdrawal of ASP)

   Following on from the example in Section 5.1.4, and ASP1 withdraws
   from service

     SG                  ASP1                 ASP2                 ASP3
      |                    |                   |                   |
      |<----ASP Inact------|                   |                   |
      |---ASP Inact Ack--->|                   |                   |
      |                    |                   |                   |
      |---------------------------------NTFY(Ins. ASPs)----------->|
      |                    |                   |                   |
      |<-----------------------------------------ASP Act (Ldshr)---|
      |-------------------------------------------ASP Act (Ack)--->|
      |                    |                   |                   |

   In this case, the SG has knowledge of the minimum ASP resources
   required (implementation dependent) for example if the SG knows that
   n+k = 2+1 for a load-share AS and n currently equals 1.

   Note:  If the SG detects loss of the ASP1 IUA peer (IUA heartbeat
   loss or detection of SCTP failure), the first SG-ASP1 ASP Inactive
   message exchange would not occur.

5.3 Q.921/Q.931 primitives backhaul Examples

   When the IUA layer on the ASP has a QPTM message to send to the SG,
   it will do the following:

      -  Determine the correct SG

      -  Find the SCTP association to the chosen SG

      -  Determine the correct stream in the SCTP association based on
         the D channel

      -  Fill in the QPTM message, fill in IUA Message Header, fill in
         Common Header

Morneault, et al.           Standards Track                    [Page 59]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

      -  Send the QPTM message to the remote IUA peer in the SG, over
         the SCTP association

   When the IUA layer on the SG has a QPTM message to send to the ASP,
   it will do the following:

      -  Determine the AS for the Interface Identifier

      -  Determine the Active ASP (SCTP association) within the AS

      -  Determine the correct stream in the SCTP association based on
         the D channel

      -  Fill in the QPTM message, fill in IUA Message Header, fill in
         Common Header

      -  Send the QPTM message to the remote IUA peer in the ASP, over
         the SCTP association

   An example of the message flows for establishing a data link on a
   signaling channel, passing PDUs and releasing a data link on a
   signaling channel is shown below.  An active association between MGC
   and SG is established (Section 5.1) prior to the following message
   flows.

            SG                             ASP

                        <----------- Establish Request
      Establish Confirm  ---------->

                        <----------- Data Request
         Data Indication ----------->
                        <----------- Data Request
         Data Indication ----------->
                        <----------- Data Request
                        <----------- Data Request
         Data Indication ----------->

                        <----------- Release Request (RELEASE_MGMT)
        Release Confirm  ---------->

   An example of the message flows for a failed attempt to establish a
   data link on the signaling channel is shown below.  In this case, the
   gateway has a problem with its physical connection (e.g., Red Alarm),
   so it cannot establish a data link on the signaling channel.

Morneault, et al.           Standards Track                    [Page 60]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

            SG                             ASP

                        <----------- Establish Request (ESTABLISH_START)
      Release Indication ---------->
      (RELEASE_PHYS)

5.4 Layer Management Communication Examples

   An example of the message flows for communication between Layer
   Management modules between SG and ASP is shown below.  An active
   association between ASP and SG is established (Section 5.1) prior to
   the following message flows.

                  SG                       ASP

                        <----------- Data Request
        Error Indication ---------->
         (INVALID_TEI)

                        <----------- TEI Status Request
      TEI Status Confirm ---------->
           (Unassigned)

6.0 Security

   IUA is designed to carry signaling messages for telephony services.
   As such, IUA MUST involve the security needs of several parties the
   end users of the services; the network providers and the applications
   involved.  Additional requirements MAY come from local regulation.
   While having some overlapping security needs, any security solution
   SHOULD fulfill all of the different parties' needs.

6.1 Threats

   There is no quick fix, one-size-fits-all solution for security.  As a
   transport protocol, IUA has the following security objectives:

      *  Availability of reliable and timely user data transport.
      *  Integrity of user data transport.
      *  Confidentiality of user data.

   IUA runs on top of SCTP.  SCTP [3] provides certain transport related
   security features, such as

      *  Blind Denial of Service Attacks
      *  Flooding
      *  Masquerade
      *  Improper Monopolization of Services

Morneault, et al.           Standards Track                    [Page 61]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   When IUA is running in professionally managed corporate or service
   provider network, it is reasonable to expect that this network
   includes an appropriate security policy framework.  The "Site
   Security Handbook" [5] SHOULD be consulted for guidance.

   When the network in which IUA runs in involves more than one party,
   it MAY NOT be reasonable to expect that all parties have implemented
   security in a sufficient manner.  In such a case, it is recommended
   that IPSEC is used to ensure confidentiality of user payload.
   Consult [6] for more information on configuring IPSEC services.

6.2 Protecting Confidentiality

   Particularly for mobile users, the requirement for confidentiality
   MAY include the masking of IP addresses and ports.  In this case
   application level encryption is not sufficient; IPSEC ESP SHOULD be
   used instead.  Regardless of which level performs the encryption, the
   IPSEC ISAKMP service SHOULD be used for key management.

7.0 IANA Considerations

7.1 SCTP Payload Protocol Identifier

   A request will be made to IANA to assign an IUA value for the Payload
   Protocol Identifier in SCTP Payload Data chunk.  The following SCTP
   Payload Protocol Identifier will be registered:

         IUA    "1"

   The SCTP Payload Protocol Identifier is included in each SCTP Data
   chunk, to indicate which protocol the SCTP is carrying.  This Payload
   Protocol Identifier is not directly used by SCTP but MAY be used by
   certain network entities to identify the type of information being
   carried in a Data chunk.

   The User Adaptation peer MAY use the Payload Protocol Identifier as a
   way of determining additional information about the data being
   presented to it by SCTP.

7.2  IUA Protocol Extensions

   This protocol may also be extended through IANA in three ways:

      -- through definition of additional message classes,
      -- through definition of additional message types, and
      -- through definition of additional message parameters.

Morneault, et al.           Standards Track                    [Page 62]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

   The definition and use of new message classes, types and parameters
   is an integral part of SIGTRAN adaptation layers.  Thus, these
   extensions are assigned by IANA through an IETF Consensus action as
   defined in [RFC2434].

   The proposed extension must in no way adversely affect the general
   working of the protocol.

7.2.1 IETF Defined Message Classes

   The documentation for a new message class MUST include the following
   information:

   (a) A long and short name for the message class.
   (b) A detailed description of the purpose of the message class.

7.2.2 IETF Defined Message Types

   Documentation of the message type MUST contain the following
   information:

   (a) A long and short name for the new message type.
   (b) A detailed description of the structure of the message.
   (c) A detailed definition and description of intended use of each
       field within the message.
       ti3 (d) A detailed procedural description of the use of the new
       message type within the operation of the protocol.
   (e) A detailed description of error conditions when receiving this
       message type.

   When an implementation receives a message type which it does not
   support, it MUST respond with an Error (ERR) message with an Error
   Code of Unsupported Message Type.

7.2.3 IETF-defined TLV Parameter Extension

   Documentation of the message parameter MUST contain the following
   information:

   (a) Name of the parameter type.
   (b) Detailed description of the structure of the parameter field.
       This structure MUST conform to the general type-length-value
       format described in Section 3.1.5.
   (c) Detailed definition of each component of the parameter value.
   (d) Detailed description of the intended use of this parameter type,
       and an indication of whether and under what circumstances
       multiple instances of this parameter type may be found within the
       same message type.

Morneault, et al.           Standards Track                    [Page 63]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

8.0 Acknowledgements

   The authors would like to thank Alex Audu, Maria Sonia Vazquez
   Arevalillo, Ming-te Chao, Keith Drage, Norm Glaude, Nikhil Jain,
   Bernard Kuc, Ming Lin, Stephen Lorusso, John Loughney, Barry
   Nagelberg, Neil Olson, Lyndon Ong, Heinz Prantner, Jose Luis Jimenez
   Ramirez, Ian Rytina, Michael Tuexen and Hank Wang for their valuable
   comments and suggestions.

9.0  References

   [1] ITU-T Recommendation Q.920, 'Digital Subscriber signaling System
       No. 1 (DSS1) - ISDN User-Network Interface Data Link Layer -
       General Aspects'

   [2] T1S1.7/99-220 Contribution, 'Back-hauling of DSS1 protocol in a
       Voice over Packet Network'

   [3] Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer, H.,
       Taylor, T., Rytina, I., Kalla, M., Zhang, L. and V. Paxson,
       "Stream Control Transmission Protocol", RFC 2960, October 2000.

   [4] Ong, L., Rytina, I., Garcia, M., Schwarzbauer, H., Coene, L.,
       Lin, H., Juhasz, I., Holdrege, M., and C. Sharp, "Architectural
       Framework for Signaling Transport", RFC 2719, October 1999.

   [5] Fraser, B., "Site Security Handbook", FYI 8, RFC 2196, September
       1997.

   [6] Kent, S. and R. Atkinson, "Security Architecture for the Internet
       Protocol", RFC 2401, November 1998.

   [7] Bradner, s., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

   [8] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
       Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.

Morneault, et al.           Standards Track                    [Page 64]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

10.0 Authors' Addresses

   Ken Morneault
   Cisco Systems Inc.
   13615 Dulles Technology Drive
   Herndon, VA. 20171
   USA

   Phone: +1-703-484-3323
   EMail: kmorneau@cisco.com

   Malleswar Kalla
   Telcordia Technologies
   PYA 2J-341
   3 Corporate Place
   Piscataway, NJ 08854
   USA

   Phone: +1-732-699-3728
   EMail: mkalla@telcordia.com

   Selvam Rengasami
   Telcordia Technologies
   NVC-2Z439
   331 Newman Springs Road
   Red Bank, NJ 07701
   USA

   Phone: +1-732-758-5260
   EMail: srengasa@telcordia.com

   Greg Sidebottom
   Nortel Networks
   3685 Richmond Road
   Nepean, Ontario
   Canada  K2H5B7

   Phone: +1-613-763-7305
   EMail: gregside@nortelnetworks.com

Morneault, et al.           Standards Track                    [Page 65]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001

10. Full Copyright Statement

   Copyright (C) The Internet Society (2001).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

Morneault, et al.           Standards Track                    [Page 66]