Network Working Group                                           B. Aboba
Request for Comments: 3539                                     Microsoft
Category: Standards Track                                        J. Wood
                                                  Sun Microsystems, Inc.
                                                               June 2003

  Authentication, Authorization and Accounting (AAA) Transport Profile

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

   This document discusses transport issues that arise within protocols
   for Authentication, Authorization and Accounting (AAA).  It also
   provides recommendations on the use of transport by AAA protocols.
   This includes usage of standards-track RFCs as well as experimental
   proposals.

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
       1.1.  Requirements Language. . . . . . . . . . . . . . . . . .  2
       1.2.  Terminology. . . . . . . . . . . . . . . . . . . . . . .  2
   2.  Issues in Transport Usage. . . . . . . . . . . . . . . . . . .  5
       2.1.  Application-driven Versus Network-driven . . . . . . . .  5
       2.2.  Slow Failover. . . . . . . . . . . . . . . . . . . . . .  6
       2.3.  Use of Nagle Algorithm . . . . . . . . . . . . . . . . .  7
       2.4.  Multiple Connections . . . . . . . . . . . . . . . . . .  7
       2.5.  Duplicate Detection. . . . . . . . . . . . . . . . . . .  8
       2.6.  Invalidation of Transport Parameter Estimates. . . . . .  8
       2.7.  Inability to use Fast Re-Transmit. . . . . . . . . . . .  9
       2.8.  Congestion Avoidance . . . . . . . . . . . . . . . . . .  9
       2.9.  Delayed Acknowledgments. . . . . . . . . . . . . . . . . 11
       2.10. Premature Failover . . . . . . . . . . . . . . . . . . . 11
       2.11. Head of Line Blocking. . . . . . . . . . . . . . . . . . 11
       2.12. Connection Load Balancing. . . . . . . . . . . . . . . . 12

Aboba & Wood                Standards Track                     [Page 1]

RFC 3539                 AAA Transport Profile                 June 2003

   3.  AAA Transport Profile. . . . . . . . . . . . . . . . . . . . . 12
       3.1.  Transport Mappings . . . . . . . . . . . . . . . . . . . 12
       3.2.  Use of Nagle Algorithm . . . . . . . . . . . . . . . . . 12
       3.3.  Multiple Connections . . . . . . . . . . . . . . . . . . 13
       3.4.  Application Layer Watchdog . . . . . . . . . . . . . . . 13
       3.5.  Duplicate Detection. . . . . . . . . . . . . . . . . . . 19
       3.6.  Invalidation of Transport Parameter Estimates. . . . . . 20
       3.7.  Inability to use Fast Re-Transmit. . . . . . . . . . . . 21
       3.8.  Head of Line Blocking. . . . . . . . . . . . . . . . . . 22
       3.9.  Congestion Avoidance . . . . . . . . . . . . . . . . . . 23
       3.10. Premature Failover . . . . . . . . . . . . . . . . . . . 24
   4.  Security Considerations. . . . . . . . . . . . . . . . . . . . 24
   5.  IANA Considerations. . . . . . . . . . . . . . . . . . . . . . 25
   6.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 25
       6.1.  Normative References . . . . . . . . . . . . . . . . . . 25
       6.2.  Informative References . . . . . . . . . . . . . . . . . 26
   Appendix A - Detailed Watchdog Algorithm Description . . . . . . . 28
   Appendix B - AAA Agents. . . . . . . . . . . . . . . . . . . . . . 33
       B.1.  Relays and Proxies . . . . . . . . . . . . . . . . . . . 33
       B.2.  Re-directs . . . . . . . . . . . . . . . . . . . . . . . 35
       B.3.  Store and Forward Proxies. . . . . . . . . . . . . . . . 36
       B.4.  Transport Layer Proxies. . . . . . . . . . . . . . . . . 38
   Intellectual Property Statement. . . . . . . . . . . . . . . . . . 39
   Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . 39
   Author Addresses . . . . . . . . . . . . . . . . . . . . . . . . . 40
   Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 41

1.  Introduction

   This document discusses transport issues that arise within protocols
   for Authentication, Authorization and Accounting (AAA).  It also
   provides recommendations on the use of transport by AAA protocols.
   This includes usage of standards-track RFCs as well as experimental
   proposals.

1.1.  Requirements Language

   In this document, the key words "MAY", "MUST, "MUST NOT", "optional",
   "recommended", "SHOULD", and "SHOULD NOT", are to be interpreted as
   described in [RFC2119].

1.2.  Terminology

   Accounting
             The act of collecting information on resource usage for the
             purpose of trend analysis, auditing, billing, or cost
             allocation.

Aboba & Wood                Standards Track                     [Page 2]

RFC 3539                 AAA Transport Profile                 June 2003

   Administrative Domain
             An internet, or a collection of networks, computers, and
             databases under a common administration.

   Agent     A AAA agent is an intermediary that communicates with AAA
             clients and servers.  Several types of AAA agents exist,
             including Relays, Re-directs, and Proxies.

   Application-driven transport
             Transport behavior is said to be "application-driven" when
             the rate at which messages are sent is limited by the rate
             at which the application generates data, rather than by the
             size of the congestion window.  In the most extreme case,
             the time between transactions exceeds the round-trip time
             between sender and receiver, implying that the application
             operates with an effective congestion window of one.  AAA
             transport is typically application driven.

   Attribute Value Pair (AVP)
             The variable length concatenation of a unique Attribute
             (represented by an integer) and a Value containing the
             actual value identified by the attribute.

   Authentication
             The act of verifying a claimed identity, in the form of a
             pre-existing label from a mutually known name space, as the
             originator of a message (message authentication) or as the
             end-point of a channel (entity authentication).

   Authorization
             The act of determining if a particular right, such as
             access to some resource, can be granted to the presenter of
             a particular credential.

   Billing   The act of preparing an invoice.

   Network Access Identifier
             The Network Access Identifier (NAI) is the userID submitted
             by the host during network access authentication.  In
             roaming, the purpose of the NAI is to identify the user as
             well as to assist in the routing of the authentication
             request.  The NAI may not necessarily be the same as the
             user's e-mail address or the user-ID submitted in an
             application layer authentication.

Aboba & Wood                Standards Track                     [Page 3]

RFC 3539                 AAA Transport Profile                 June 2003

   Network Access Server (NAS)
             A Network Access Server (NAS) is a device that hosts
             connect to in order to get access to the network.

   Proxy     In addition to forwarding requests and responses, proxies
             enforce policies relating to resource usage and
             provisioning.  This is typically accomplished by tracking
             the state of NAS devices.  While proxies typically do not
             respond to client Requests prior to receiving a Response
             from the server, they may originate Reject messages in
             cases where policies are violated.  As a result, proxies
             need to understand the semantics of the messages passing
             through them, and may not support all extensions.

   Local Proxy
             A Local Proxy is a proxy that exists within the same
             administrative domain as the network device (e.g. NAS) that
             issued the AAA request.  Typically a local proxy is used to
             multiplex AAA messages to and from a large number of
             network devices, and may implement policy.

   Store and forward proxy
             Store and forward proxies distinguish themselves from other
             proxy species by sending a reply to the NAS prior to
             proxying the request to the server.  As a result, store and
             forward proxies need to implement AAA client and server
             functionality for the messages that they handle.  Store and
             Forward proxies also typically keep state on conversations
             in progress in order to assure delivery of proxied Requests
             and Responses.  While store and forward proxies are most
             frequently deployed for accounting, they also can be used
             to implement authentication/authorization policy.

   Network-driven transport
             Transport behavior is said to be "network driven" when the
             rate at which messages are sent is limited by the
             congestion window, not by the rate at which the application
             can generate data.  File transfer is an example of an
             application where transport is network driven.

   Re-direct Rather than forwarding Requests and Responses between
             clients and servers, Re-directs refer clients to servers
             and allow them to communicate directly.  Since Re-directs
             do not sit in the forwarding path, they do not alter any
             AVPs transitting between client and server.  Re-directs do
             not originate messages and are capable of handling any
             message type.  A Re-direct may be configured only to re-
             direct messages of certain types, while acting as a Relay

Aboba & Wood                Standards Track                     [Page 4]

RFC 3539                 AAA Transport Profile                 June 2003

             or Proxy for other types.  As with Relays, re-directs do
             not keep state with respect to conversations or NAS
             resources.

   Relay     Relays forward requests and responses based on routing-
             related AVPs and domain forwarding table entries.  Since
             relays do not enforce policies, they do not examine or
             alter non-routing AVPs.  As a result, relays never
             originate messages, do not need to understand the semantics
             of messages or non-routing AVPs, and are capable of
             handling any extension or message type.  Since relays make
             decisions based on information in routing AVPs and domain
             forwarding tables they do not keep state on NAS resource
             usage or conversations in progress.

2.  Issues in AAA Transport Usage

   Issues that arise in AAA transport usage include:

      Application-driven versus network-driven
      Slow failover
      Use of Nagle Algorithm
      Multiple connections
      Duplicate detection
      Invalidation of transport parameter estimates
      Inability to use fast re-transmit
      Congestion avoidance
      Delayed acknowledgments
      Premature Failover
      Head of line blocking
      Connection load balancing

   We discuss each of these issues in turn.

2.1.  Application-driven versus Network-driven

   AAA transport behavior is typically application rather than network
   driven.  This means that the rate at which messages are sent is
   typically limited by how quickly they are generated by the
   application, rather than by the size of the congestion window.

   For example, let us assume a 48-port NAS with an average session time
   of 20 minutes.  This device will, on average, send only 144
   authentication/authorization requests/hour, and an equivalent number
   of accounting requests.  This represents an average inter-packet
   spacing of 25 seconds, which is much larger than the Round Trip Time
   (RTT) in most networks.

Aboba & Wood                Standards Track                     [Page 5]

RFC 3539                 AAA Transport Profile                 June 2003

   Even on much larger NAS devices, the inter-packet spacing is often
   larger than the RTT.  For example, consider a 2048-port NAS with an
   average session time of 10 minutes.  It will on average send 3.4
   authentication/authorization requests/second, and an equivalent
   number of accounting requests.  This translates to an average inter-
   packet spacing of 293 ms.

   However, even where transport behavior is largely application-driven,
   periods of network-driven behavior can occur.  For example, after a
   NAS reboot, previously stored accounting records may be sent to the
   accounting server in rapid succession.  Similarly, after recovery
   from a power failure, users may respond with a large number of
   simultaneous logins.  In both cases, AAA messages may be generated
   more quickly than the network will allow them to be sent, and a queue
   will build up.

   Network congestion can occur when transport behavior is network-
   driven or application-driven.  For example, while a single NAS may
   not send substantial AAA traffic, many NASes may communicate with a
   single AAA proxy or server.  As a result, routers close to a heavily
   loaded proxy or server may experience congestion, even though traffic
   from each individual NAS is light.  Such "convergent congestion" can
   result in dropped packets in routers near the AAA server, or even
   within the AAA server itself.

   Let us consider what happens when 10,000 48-ports NASes, each with an
   average session time of 20 minutes, are configured with the same AAA
   agent or server.  The unfortunate proxy or server would receive 400
   authentication/authorization requests/second and an equivalent number
   of accounting requests.  For 1000 octet requests, this would generate
   6.4 Mbps of incoming traffic at the AAA agent or server.

   While this transaction load is within the capabilities of the fastest
   AAA agents and servers, implementations exist that cannot handle such
   a high load.  Thus high queuing delays and/or dropped packets may be
   experienced at the agent or server, even if routers on the path are
   not congested.  Thus, a well designed AAA protocol needs to be able
   to handle congestion occurring at the AAA server, as well as
   congestion experienced within the network.

2.2.  Slow Failover

   Where TCP [RFC793] is used as the transport, AAA implementations will
   experience very slow fail over times if they wait until a TCP
   connection times out before resending on another connection.  This is
   not an issue for SCTP [RFC2960], which supports endpoint and path
   failure detection.  As described in section 8 of [RFC2960], when the
   number of retransmissions exceeds the maximum

Aboba & Wood                Standards Track                     [Page 6]

RFC 3539                 AAA Transport Profile                 June 2003

   ("Association.Max.Retrans"), the peer endpoint is considered
   unreachable, the association enters the CLOSED state, and the failure
   is reported to the application.  This enables more rapid failure
   detection.

2.3.  Use of Nagle Algorithm

   AAA protocol messages are often smaller than the maximum segment size
   (MSS).  While exceptions occur when certificate-based authentication
   messages are issued or where a low path MTU is found, typically AAA
   protocol messages are less than 1000 octets.  Therefore, when using
   TCP [RFC793], the total packet count and associated network overhead
   can be reduced by combining multiple AAA messages within a single
   packet.

   Where AAA runs over TCP and transport behavior is network-driven,
   such as after a reboot when many users login simultaneously, or many
   stored accounting records need to be sent, the Nagle algorithm will
   result in "transport layer batching" of AAA messages.  While this
   does not reduce the work required by the application in parsing
   packets and responding to the messages, it does reduce the number of
   packets processed by routers along the path.  The Nagle algorithm is
   not used with SCTP.

   Where AAA transport is application-driven, the NAS will typically
   receive a reply from the home server prior to having another request
   to send.  This implies, for example, that accounting requests will
   typically be sent individually rather than being batched by the
   transport layer.  As a result, within the application-driven regime,
   the Nagle algorithm [RFC896] is ineffective.

2.4.  Multiple Connections

   Since the RADIUS [RFC2865] Identifier field is a single octet, a
   maximum of 256 requests can be in progress between two endpoints
   described by a 5-tuple: (Client IP address, Client port, UDP, Server
   IP address, Server port).  In order to get around this limitation,
   RADIUS clients have utilized more than one sending port, sometimes
   even going to the extreme of using a different UDP source port for
   each NAS port.

   Were this behavior to be extended to AAA protocols operating over
   reliable transport, the result would be multiplication of the
   effective slow-start ramp-up by the number of connections.  For
   example, if a AAA client had ten connections open to a AAA agent, and
   used a per-connection initial window [RFC3390] of 2, then the

Aboba & Wood                Standards Track                     [Page 7]

RFC 3539                 AAA Transport Profile                 June 2003

   effective initial window would be 20.  This is inappropriate, since
   it would permit the AAA client to send a large burst of packets into
   the network.

2.5.  Duplicate Detection

   Where a AAA client maintains connections to multiple AAA agents or
   servers, and where failover/failback or connection load balancing is
   supported, it is possible for multiple agents or servers to receive
   duplicate copies of the same transaction.  A transaction may be sent
   on another connection before expiration of the "time wait" interval
   necessary to guarantee that all packets sent on the original
   connection have left the network.  Therefore it is conceivable that
   transactions sent on the alternate connection will arrive before
   those sent on the failed connection.  As a result, AAA agents and
   servers MUST be prepared to handle duplicates, and MUST assume that
   duplicates can arrive on any connection.

   For example, in billing, it is necessary to be able to weed out
   duplicate accounting records, based on the accounting session-id,
   event-timestamp and NAS identification information.  Where
   authentication requests are always idempotent, the resultant
   duplicate responses from multiple servers will presumably be
   identical, so that little harm will result.

   However, there are situations where the response to an authentication
   request will depend on a previously established state, such as when
   simultaneous usage restrictions are being enforced.  In such cases,
   authentication requests will not be idempotent.  For example, while
   an initial request might elicit an Accept response, a duplicate
   request might elicit a Reject response from another server, if the
   user were already presumed to be logged in, and only one simultaneous
   session were permitted.  In these situations, the AAA client might
   receive both Accept and Reject responses to the same duplicate
   request, and the outcome will depend on which response arrives first.

2.6.  Invalidation of Transport Parameter Estimates

   Congestion control principles [Congest],[RFC2914] require the ability
   of a transport protocol to respond effectively to congestion, as
   sensed via increasing delays, packet loss, or explicit congestion
   notification.

   With network-driven applications, it is possible to respond to
   congestion on a timescale comparable to the round-trip time (RTT).

   However, with AAA protocols, the time between sends may be longer
   than the RTT, so that the network conditions can not be assumed to

Aboba & Wood                Standards Track                     [Page 8]

RFC 3539                 AAA Transport Profile                 June 2003

   persist between sends.  For example, the congestion window may grow
   during a period in which congestion is being experienced because few
   packets are sent, limiting the opportunity for feedback.  Similarly,
   after congestion is detected, the congestion window may remain small,
   even though the network conditions that existed at the time of
   congestion no longer apply by the time when the next packets are
   sent.  In addition, due to the low sampling interval, estimates of
   RTT and RTO made via the procedure described in [RFC2988] may become
   invalid.

2.7.  Inability to Use Fast Re-transmit

   When congestion window validation [RFC2861] is implemented, the
   result is that AAA protocols operate much of the time in slow-start
   with an initial congestion window set to 1 or 2, depending on the
   implementation [RFC3390].  This implies that AAA protocols gain
   little benefit from the windowing features of reliable transport.

   Since the congestion window is so small, it is generally not possible
   to receive enough duplicate ACKs (3) to trigger fast re-transmit.  In
   addition, since AAA traffic is two-way, ACKs including data will not
   count as part of the duplicate ACKs necessary to trigger fast re-
   transmit.  As a result, dropped packets will require a retransmission
   timeout (RTO).

2.8.  Congestion Avoidance

   The law of conservation of packets [Congest] suggests that a client
   should not send another packet into the network until it can be
   reasonably sure that a packet has exited the network on the same
   path.  In the case of a AAA client, the law suggests that it should
   not retransmit to the same server or choose another server until it
   can be reasonably sure that a packet has exited the network on the
   same path.  If the client advances the window as responses arrive,
   then the client will "self clock", adjusting its transmission rate to
   the available bandwidth.

   While a AAA client using a reliable transport such as TCP [RFC793] or
   SCTP [RFC2960] will self-clock when communicating directly with a
   AAA-server, end-to-end self-clocking is not assured when AAA agents
   are present.

   As described in the Appendix, AAA agents include Relays, Proxies,
   Re-directs, Store and Forward proxies, and Transport proxies.  Of
   these agents, only Transport proxies and Re-directs provide a direct
   transport connection between the AAA client and server, allowing
   end-to-end self-clocking to occur.

Aboba & Wood                Standards Track                     [Page 9]

RFC 3539                 AAA Transport Profile                 June 2003

   With Relays, Proxies or Store and Forward proxies, two separate and
   de-coupled transport connections are used.  One connection operates
   between the AAA client and agent, and another between the agent and
   server.  Since the two transport connections are de-coupled,
   transport layer ACKs do not flow end-to-end, and self-clocking does
   not occur.

   For example, consider what happens when the bottleneck exists between
   a AAA Relay and a AAA server.  Self-clocking will occur between the
   AAA client and AAA Relay, causing the AAA client to adjust its
   sending rate to the rate at which transport ACKs flow back from the
   AAA Relay.  However, since this rate is higher than the bottleneck
   bandwidth, the overall system will not self-clock.

   Since there is no direct transport connection between the AAA client
   and AAA server, the AAA client does not have the ability to estimate
   end-to-end transport parameters and adjust its sending rate to the
   bottleneck bandwidth between the Relay and server.  As a result, the
   incoming rate at the AAA Relay can be higher than the rate at which
   packets can be sent to the AAA server.

   In this case, the end-to-end performance will be determined by
   details of the agent implementation.  In general, the end-to-end
   transport performance in the presence of Relays, Proxies or Store and
   Forward proxies will always be worse in terms of delay and packet
   loss than if the AAA client and server were communicating directly.

   For example, if the agent operates with a large receive buffer, it is
   possible that a large queue will develop on the receiving side, since
   the AAA client is able to send packets to the AAA agent more rapidly
   than the agent can send them to the AAA server.  Eventually, the
   buffer will overflow, causing wholesale packet loss as well as high
   delay.

   Methods to induce fine-grained coupling between the two transport
   connections are difficult to implement.  One possible solution is for
   the AAA agent to operate with a receive buffer that is no larger than
   its send buffer.  If this is done, "back pressure" (closing of the
   receive window) will cause the agent to reduce the AAA client sending
   rate when the agent send buffer fills.  However, unless multiple
   connections exist between the AAA client and AAA agent, closing of
   the receive window will affect all traffic sent by the AAA client,
   even traffic destined to AAA servers where no bottleneck exists.
   Since multiple connections between a AAA client and agent result in
   multiplication of the effective slow-start ramp rate, this is not
   recommended.  As a result, use of "back pressure" cannot enable
   individual AAA client-server conversations to self-clock, and this
   technique appears impractical for use in AAA.

Aboba & Wood                Standards Track                    [Page 10]

RFC 3539                 AAA Transport Profile                 June 2003

2.9.  Delayed Acknowledgments

   As described in Appendix B, ACKs may comprise as much as half of the
   traffic generated in a AAA exchange.  This occurs because AAA
   conversations are typically application-driven, and therefore there
   is frequently not enough traffic to enable ACK piggybacking.  As a
   result, AAA protocols running over TCP or SCTP transport may
   experience a doubling of traffic as compared with implementations
   utilizing UDP transport.

   It is typically not possible to address this issue via the sockets
   API.  ACK parameters (such as the value of the delayed ACK timer) are
   typically fixed by TCP and SCTP implementations and are therefore not
   tunable by the application.

2.10.  Premature Failover

   RADIUS failover implementations are typically based on the concept of
   primary and secondary servers, in which all traffic flows to the
   primary server unless it is unavailable.  However, the failover
   algorithm was not specified in [RFC2865] or [RFC2866].  As a result,
   RADIUS failover implementations vary in quality, with some failing
   over prematurely, violating the law of "conservation of packets".

   Where a Relay, Proxy or Store and Forward proxy is present, the AAA
   client has no direct connection to a AAA server, and is unable to
   estimate the end-to-end transport parameters.  As a result, a AAA
   client awaiting an application-layer response from the server has no
   transport-based mechanism for determining an appropriate failover
   timer.

   For example, if the path between the AAA agent and server includes a
   high delay link, or if the AAA server is very heavily loaded, it is
   possible that the NAS will failover to another agent while packets
   are still in flight.  This violates the principle of "conservation of
   packets", since the AAA client will inject additional packets into
   the network before having evidence that a previously sent packet has
   left the network.  Such behavior can result in a worse situation on
   an already congested link, resulting in congestive collapse
   [Congest].

2.11.  Head of Line Blocking

   Head of line blocking occurs during periods of packet loss where the
   time between sends is shorter than the re-transmission timeout value
   (RTO).  In such situations, packets back up in the send queue until

Aboba & Wood                Standards Track                    [Page 11]

RFC 3539                 AAA Transport Profile                 June 2003

   the lost packet can be successfully re-transmitted.  This can be an
   issue for SCTP when using ordered delivery over a single stream, and
   for TCP.

   Head of line blocking is typically an issue only on larger NASes.
   For example, a 48-port NAS with an average inter-packet spacing of 25
   seconds is unlikely to have an RTO greater than this, unless severe
   packet loss has been experienced.  However, a 2048-port NAS with an
   average inter-packet spacing of 293 ms may experience head-of-line
   blocking since the inter-packet spacing is less than the minimum RTO
   value of 1 second [RFC2988].

2.12.  Connection Load Balancing

   In order to lessen queuing delays and address head of line blocking,
   a AAA implementation may wish to load balance between connections to
   multiple destinations.  While it is possible to employ dynamic load
   balancing techniques, this level of sophistication may not be
   required.  In many situations, adequate reliability and load
   balancing can be achieved via static load balancing, where traffic is
   distributed between destinations based on static "weights".

3.  AAA Transport Profile

   In order to address AAA transport issues, it is recommended that AAA
   protocols make use of standards track as well as experimental
   techniques.  More details are provided in the sections that follow.

3.1.  Transport Mappings

   AAA Servers MUST support TCP and SCTP.  AAA clients SHOULD support
   SCTP, but MUST support TCP if SCTP is not available.  As support for
   SCTP improves, it is possible that SCTP support will be required on
   clients at some point in the future.  AAA agents inherit all the
   obligations of Servers with respect to transport support.

3.2.  Use of Nagle Algorithm

   While AAA protocols typically operate in the application-driven
   regime, there are circumstances in which they are network driven.
   For example, where an NAS reboots, or where connectivity is restored
   between an NAS and a AAA agent, it is possible that multiple packets
   will be available for sending.

   As a result, there are circumstances where the transport-layer
   batching provided by the Nagle Algorithm (12) is useful, and as a
   result, AAA implementations running over TCP MUST enable the Nagle
   algorithm, [RFC896].  The Nagle algorithm is not used with SCTP.

Aboba & Wood                Standards Track                    [Page 12]

RFC 3539                 AAA Transport Profile                 June 2003

3.3.  Multiple Connections

   AAA protocols SHOULD use only a single persistent connection between
   a AAA client and a AAA agent or server.  They SHOULD provide for
   pipelining of requests, so that more than one request can be in
   progress at a time.  In order to minimize use of inactive connections
   in roaming situations, a AAA client or agent MAY bring down a
   connection to a AAA agent or server if the connection has been
   unutilized (discounting the watchdog) for a certain period of time,
   which MUST NOT be less than BRINGDOWN_INTERVAL (5 minutes).

   While a AAA client/agent SHOULD only use a single persistent
   connection to a given AAA agent or server, it MAY have connections to
   multiple AAA agents or servers.  A AAA client/agent connected to
   multiple agents/servers can treat them as primary/secondary or
   balance load between them.

3.4.  Application Layer Watchdog

   In order to enable AAA implementations to more quickly detect
   transport and application-layer failures, AAA protocols MUST support
   an application layer watchdog message.

   The application layer watchdog message enables failover from a peer
   that has failed, either because it is unreachable or because its
   applications functions have failed.  This is distinct from the
   purpose of the SCTP heartbeat, which is to enable failover between
   interfaces.  The SCTP heartbeat may enable a failover to another path
   to reach the same server, but does not address the situation where
   the server system or the application service has failed.  Therefore
   both mechanisms MAY be used together.

   The watchdog is used in order to enable a AAA client or agent to
   determine when to resend on another connection.  It operates on all
   open connections and is used to suspend and eventually close
   connections that are experiencing difficulties.  The watchdog is also
   used to re-open and validate connections that have returned to
   health.  The watchdog may be utilized either within primary/secondary
   or load balancing configurations.  However, it is not intended as a
   cluster heartbeat mechanism.

   The application layer watchdog is designed to detect failures of the
   immediate peer, and not to be affected by failures of downstream
   proxies or servers.  This prevents instability in downstream AAA
   components from propagating upstream.  While the receipt of any AAA
   Response from a peer is taken as evidence that the peer is up, lack
   of a Response is insufficient to conclude that the peer is down.
   Since the lack of Response may be the result of problems with a

Aboba & Wood                Standards Track                    [Page 13]

RFC 3539                 AAA Transport Profile                 June 2003

   downstream proxy or server, only after failure to respond to the
   watchdog message can it be determined that the peer is down.

   Since the watchdog algorithm takes any AAA Response into account in
   determining peer liveness, decreases in the watchdog timer interval
   do not significantly increase the level of watchdog traffic on
   heavily loaded networks.  This is because watchdog messages do not
   need to be sent where other AAA Response traffic serves as a constant
   reminder of peer liveness.  Watchdog traffic only increases when AAA
   traffic is light, and therefore a AAA Response "signal" is not
   present.  Nevertheless, decreasing the timer interval TWINIT does
   increase the probability of false failover significantly, and so this
   decision should be made with care.

3.4.1.  Algorithm Overview

   The watchdog behavior is controlled by an algorithm defined in this
   section.  This algorithm is appropriate for use either within
   primary/secondary or load balancing configurations.  Implementations
   SHOULD implement this algorithm, which operates as follows:

   [1] Watchdog behavior is controlled by a single timer (Tw).  The
       initial value of Tw, prior to jittering is Twinit.  The default
       value of Twinit is 30 seconds.  This value was selected because
       it minimizes the probability that failover will be initiated due
       to a routing flap, as noted in [Paxson].

       While Twinit MAY be set as low as 6 seconds (not including
       jitter), it MUST NOT be set lower than this.  Note that setting
       such a low value for Twinit is likely to result in an increased
       probability of duplicates, as well as an increase in spurious
       failover and failback attempts.

       In order to avoid synchronization behaviors that can occur with
       fixed timers among distributed systems, each time the watchdog
       interval is calculated with a jitter by using the Twinit value
       and randomly adding a value drawn between -2 and 2 seconds.
       Alternative calculations to create jitter MAY be used.  These
       MUST be pseudo-random, generated by a PRNG seeded as per
       [RFC1750].

   [2] When any AAA message is received, Tw is reset.  This need not be
       a response to a watchdog request.  Receiving a watchdog response
       from a peer constitutes activity, and Tw should be reset.  If the
       watchdog timer expires and no watchdog response is pending, then
       a watchdog message is sent.  On sending a watchdog request, Tw is
       reset.

Aboba & Wood                Standards Track                    [Page 14]

RFC 3539                 AAA Transport Profile                 June 2003

       Watchdog packets are not retransmitted by the AAA protocol, since
       AAA protocols run over reliable transports that will handle all
       retransmissions internally.  As a result, a watchdog request is
       only sent when there is no watchdog response pending.

   [3] If the watchdog timer expires and a watchdog response is pending,
       then failover is initiated.  In order for a AAA client or agent
       to perform failover procedures, it is necessary to maintain a
       pending message queue for a given peer.  When an answer message
       is received, the corresponding request is removed from the queue.
       The Hop-by-Hop Identifier field MAY be used to match the answer
       with the queued request.

       When failover is initiated, all messages in the queue are sent to
       an alternate agent, if available.  Multiple identical requests or
       answers may be received as a result of a failover.  The
       combination of an end-to-end identifier and the origin host MUST
       be used to identify duplicate messages.

       Note that where traffic is heavy, the application layer watchdog
       can take as long as 2Tw to determine that a peer has gone down.
       For peers receiving a high volume of AAA Requests, AAA Responses
       will continually reset the timer, so that after a failure it will
       take Tw for the lack of traffic to be noticed, and for the
       watchdog message to be sent.  Another Tw will elapse before
       failover is initiated.

       On a lightly loaded network without much AAA Response traffic,
       the watchdog timer will typically expire without being reset, so
       that a watchdog response will be outstanding and failover will be
       initiated after only a single timer interval has expired.

   [4] The client MUST NOT close the primary connection until the
       primary's watchdog timer has expired at least twice without a
       response (note that the watchdog is not sent a second time,
       however).  Once this has occurred, the client SHOULD cause a
       transport reset or close to be done on the connection.

       Once the primary connection has failed, subsequent requests are
       sent to the alternate server until the watchdog timer on the
       primary connection is reset.

       Suspension of the primary connection prevents flapping between
       primary and alternate connections, and ensures that failover
       behavior remains consistent.  The application may not receive a
       response to the watchdog request message due to a connectivity
       problem, in which case a transport layer ACK will not have been
       received, or the lack of response may be due to an application

Aboba & Wood                Standards Track                    [Page 15]

RFC 3539                 AAA Transport Profile                 June 2003

       problem.  Without transport layer visibility, the application is
       unable to tell the difference, and must behave conservatively.

       In situations where no transport layer ACK is received on the
       primary connection after multiple re-transmissions, the RTO will
       be exponentially backed off as described in [RFC2988].  Due to
       Karn's algorithm as implemented in SCTP and TCP, the RTO
       estimator will not be reset until another ACK is received in
       response to a non-re-transmitted request.  Thus, in cases where
       the problem occurs at the transport layer, after the client fails
       over to the alternate server, the RTO of the primary will remain
       at a high value unless an ACK is received on the primary
       connection.

       In the case where the problem occurs at the transport layer,
       subsequent requests sent on the primary connection will not
       receive the same service as was originally provided.  For
       example, instead of failover occurring after 3 retransmissions,
       failover might occur without even a single retransmission if RTO
       has been sufficiently backed off.  Of course, if the lack of a
       watchdog response was due to an application layer problem, then
       RTO will not have been backed off.  However, without transport
       layer visibility, there is no way for the application to know
       this.

       Suspending use of the primary connection until a response to a
       watchdog message is received guarantees that the RTO timer will
       have been reset before the primary connection is reused.  If no
       response is received after the second watchdog timer expiration,
       then the primary connection is closed and the suspension becomes
       permanent.

   [5] While the connection is in the closed state, the AAA client MUST
       NOT attempt to send further watchdog messages on the connection.
       However, after the connection is closed, the AAA client continues
       to periodically attempt to reopen the connection.

       The AAA client SHOULD wait for the transport layer to report
       connection failure before attempting again, but MAY choose to
       bound this wait time by the watchdog interval, Tw.  If the
       connection is successfully opened, then the watchdog message is
       sent.  Once three watchdog messages have been sent and responded
       to, the connection is returned to service, and transactions are
       once again sent over it.  Connection validation via receipt of
       multiple watchdogs is not required when a connection is initially
       brought up -- in this case, the connection can immediately be put
       into service.

Aboba & Wood                Standards Track                    [Page 16]

RFC 3539                 AAA Transport Profile                 June 2003

   [6] When using SCTP as a transport, it is not necessary to disable
       SCTP's transport-layer heartbeats.  However, if AAA
       implementations have access to SCTP's heartbeat parameters, they
       MAY chose to ensure that SCTP's heartbeat interval is longer than
       the AAA watchdog interval, Tw.  This will ensure that alternate
       paths are still probed by SCTP, while the primary path has a
       minimum of heartbeat redundancy.

3.4.2.  Primary/Secondary Failover Support

   The watchdog timer MAY be integrated with primary/secondary style
   failover so as to provide improved reliability and basic load
   balancing.  In order to balance load among multiple AAA servers, each
   AAA server is designated the primary for a portion of the clients,
   and designated as secondaries of varying priority for the remainder.
   In this way, load can be balanced among the AAA servers.

   Within primary/secondary configurations, the watchdog timer operates
   as follows:

   [1] Assume that each client or agent is initially configured with a
       single primary agent or server, and one or more secondary
       connections.

   [2] The watchdog mechanism is used to suspend and eventually close
       primary connections that are experiencing difficulties.  It is
       also used to re-open and validate connections that have returned
       to health.

   [3] Once a secondary is promoted to primary status, either on a
       temporary or permanent basis, the next server on the list of
       secondaries is promoted to fill the open secondary slot.

   [4] The client or agent periodically attempts to re-open closed
       connections, so that it is possible that a previously closed
       connection can be returned to service and become eligible for use
       again.  Implementations will typically retain a limit on the
       number of connections open at a time, so that once a previously
       closed connection is brought online again, the lowest priority
       secondary connection will be closed.  In order to prevent
       periodic closing and re-opening of secondary connections, it is
       recommended that functioning connections remain open for a
       minimum of 5 minutes.

   [5] In order to enable diagnosis of failover behavior, it is
       recommended that a table of failover events be kept within the
       MIB.  These failover events SHOULD include appropriate
       transaction identifiers so that client and server data can be

Aboba & Wood                Standards Track                    [Page 17]

RFC 3539                 AAA Transport Profile                 June 2003

       compared, providing insight into the cause of the problem
       (transport or application layer).

3.4.3.  Connection Load Balancing

   Primary/secondary failover is capable of providing improved
   resilience and basic load balancing.  However, it does not address
   TCP head of line blocking, since only a single connection is in use
   at a time.

   A AAA client or agent maintaining connections to multiple agents or
   servers MAY load balance between them.  Establishing connections to
   multiple agents or servers reduces, but does not eliminate, head of
   line blocking issues experienced on TCP connections.  This issue does
   not exist with SCTP connections utilizing multiple streams.

   In connection load balancing configurations, the application watchdog
   operates as follows:

   [1] Assume that each client or agent is initially configured with
       connections to multiple AAA agents or servers, with one
       connection between a given client/agent and an agent/server.

   [2] In static load balancing, transactions are apportioned among the
       connections based on the total number of connections and a
       "weight" assigned to each connection.  Pearson's hash [RFC3074]
       applied to the NAI [RFC2486] can be used to determine which
       connection will handle a given transaction.  Hashing on the NAI
       provides highly granular load balancing, while ensuring that all
       traffic for a given conversation will be sent to the same agent
       or server.  In dynamic load balancing, the value of the "weight"
       can vary based on conditions such as AAA server load.  Such
       techniques, while sophisticated, are beyond the scope of this
       document.

   [3] Transactions are distributed to connections based on the total
       number of available connections and their weights.  A change in
       the number of available connections forces recomputation of the
       hash table.  In order not to cause conversations in progress to
       be switched to new destinations, on recomputation, a transitional
       period is required in which both old and new hash tables are
       needed in order to permit aging out of conversations in progress.
       Note that this requires a way to easily determine whether a
       Request represents a new conversation or the continuation of an
       existing conversation.  As a result, removing and adding of
       connections is an expensive operation, and it is recommended that
       the hash table only be recomputed once a connection is closed or
       returned to service.

Aboba & Wood                Standards Track                    [Page 18]

RFC 3539                 AAA Transport Profile                 June 2003

       Suspended connections, although they are not used, do not force
       hash table reconfiguration until they are closed.  Similarly,
       re-opened connections not accumulating sufficient watchdog
       responses do not force a reconfiguration until they are returned
       to service.

       While a connection is suspended, transactions that were to have
       been assigned to it are instead assigned to the next available
       server.  While this results in a momentary imbalance, it is felt
       that this is a relatively small price to pay in order to reduce
       hash table thrashing.

   [4] In order to enable diagnosis of load balancing behavior, it is
       recommended that in addition to a table of failover events, a
       table of statistics be kept on each client, indexed by a AAA
       server.  That way, the effectiveness of the load balancing
       algorithm can be evaluated.

3.5.  Duplicate Detection

   Multiple facilities are required to enable duplicate detection.
   These include session identifiers as well as hop-by-hop and end-to-
   end message identifiers.  Hop-by-hop identifiers whose value may
   change at each hop are not sufficient, since a AAA server may receive
   the same message from multiple agents.  For example, a AAA client can
   send a request to Agent1, then failover and resend the request to
   Agent2; both agents forward the request to the home AAA server, with
   different hop-by-hop identifiers.  A Session Identifier is
   insufficient as it does not distinguish different messages for the
   the same session.

   Proper treatment of the end-to-end message identifier ensures that
   AAA operations are idempotent.  For example, without an end-to-end
   identifier, a AAA server keeping track of simultaneous logins might
   send an Accept in response to an initial Request, and then a Reject
   in response to a duplicate Request (where the user was allowed only
   one simultaneous login).  Depending on which Response arrived first,
   the user might be allowed access or not.

   However, if the server were to store the end-to-end message
   identifier along with the simultaneous login information, then the
   duplicate Request (which utilizes the same end-to-end message
   identifier) could be identified and the correct response could be
   returned.

Aboba & Wood                Standards Track                    [Page 19]

RFC 3539                 AAA Transport Profile                 June 2003

3.6.  Invalidation of Transport Parameter Estimates

   In order to address invalidation of transport parameter estimates,
   AAA protocol implementations MAY utilize Congestion Window Validation
   [RFC2861] and RTO validation when using TCP.  This specification also
   recommends a procedure for RTO validation.

   [RFC2581] and [RFC2861] both recommend that a connection go into
   slow-start after a period where no traffic has been sent within the
   RTO interval.  [RFC2861] recommends only increasing the congestion
   window if it was full when the ACK arrived.  The congestion window is
   reduced by half once every RTO interval if no traffic is received.

   When Congestion Window Validation is used, the congestion window will
   not build during application-driven periods, and instead will be
   decayed.  As a result, AAA applications operating within the
   application-driven regime will typically run with a congestion window
   equal to the initial window much of the time, operating in "perpetual
   slowstart".

   During periods in which AAA behavior is application-driven this will
   have no effect.  Since the time between packets will be larger than
   RTT, AAA will operate with an effective congestion window equal to
   the initial window.  However, during network-driven periods, the
   effect will be to space out sending of AAA packets.  Thus instead of
   being able to send a large burst of packets into the network, a
   client will need to wait several RTTs as the congestion window builds
   during slow-start.

   For example, a client operating over TCP with an initial window of 2,
   with 35 AAA requests to send would take approximately 6 RTTs to send
   them, as the congestion window builds during slow start: 2, 3, 3, 6,
   9, 12.  After the backlog is cleared, the implementation will once
   again be application-driven and the congestion window size will
   decay.  If the client were using SCTP, the number of RTTs needed to
   transmit all requests would usually be less, and would depend on the
   size of the requests, since SCTP tracks the progress for the opening
   of the congestion window by bytes, not segments.

   Note that [RFC2861] and [RFC2988] do not address the issue of RTO
   validation.  This is also a problem, particularly when the Congestion
   Manager [RFC3124] is implemented.  During periods of high packet
   loss, the RTO may be repeatedly increased via exponential back-off,
   and may attain a high value.  Due to lack of timely feedback on RTT
   and RTO during application-driven periods, the high RTO estimate may
   persist long after the conditions that generated it have dissipated.

Aboba & Wood                Standards Track                    [Page 20]

RFC 3539                 AAA Transport Profile                 June 2003

   RTO validation MAY be used to address this issue for TCP, via the
   following procedure:

      After the congestion window is decayed according to [RFC2861],
      reset the estimated RTO to 3 seconds.  After the next packet comes
      in, re-calculate RTTavg, RTTdev, and RTO according to the method
      described in [RFC2581].

   To address this issue for SCTP, AAA implementations SHOULD use SCTP
   heartbeats.  [RFC2960] states that heartbeats should be enabled by
   default, with an interval of 30 seconds.  If this interval proves to
   be too long to resolve this issue, AAA implementations MAY reduce the
   heartbeat interval.

3.7.  Inability to Use Fast Re-Transmit

   When Congestion Window Validation [RFC2861] is used, AAA
   implementations will operate with a congestion window equal to the
   initial window much of the time.  As a result, the window size will
   often not be large enough to enable use of fast re-transmit for TCP.
   In addition, since AAA traffic is two-way, ACKs carrying data will
   not count towards triggering fast re-transmit.  SCTP is less likely
   to encounter this issue, so the measures described below apply to
   TCP.

   To address this issue, AAA implementations SHOULD support selective
   acknowledgement as described in [RFC2018] and [RFC2883].  AAA
   implementations SHOULD also implement Limited Transmit for TCP, as
   described in [RFC3042].  Rather than reducing the number of duplicate
   ACKs required for triggering fast recovery, which would increase the
   number of inappropriate re-transmissions, Limited Transmit enables
   the window size be increased, thus enabling the sending of additional
   packets which in turn may trigger fast re-transmit without a change
   to the algorithm.

   However, if congestion window validation [RFC2861] is implemented,
   this proposal will only have an effect in situations where the time
   between packets is less than the estimated retransmission timeout
   (RTO).  If the time between packets is greater than RTO, additional
   packets will typically not be available for sending so as to take
   advantage of the increased window size.  As a result, AAA protocols
   will typically operate with the lowest possible congestion window
   size, resulting in a re-transmission timeout for every lost packet.

Aboba & Wood                Standards Track                    [Page 21]

RFC 3539                 AAA Transport Profile                 June 2003

3.8.  Head of Line Blocking

   TCP inherently does not provide a solution to the head-of-line
   blocking problem, although its effects can be lessened by
   implementation of Limited Transmit [RFC3042], and connection load
   balancing.

3.8.1.  Using SCTP Streams to Prevent Head of Line Blocking

   Each AAA node SHOULD distribute its messages evenly across the range
   of SCTP streams that it and its peer have agreed upon.  (A lost
   message in one stream will not cause any other streams to block.)  A
   trivial and effective implementation of this simply increments a
   counter for the stream ID to send on.  When the counter reaches the
   maximum number of streams for the association, it resets to 0.

   AAA peers MUST be able to accept messages on any stream.  Note that
   streams are used *solely* to prevent head-of-the-line blocking.  All
   identifying information is carried within the Diameter payload.
   Messages distributed across multiple streams may not be received in
   the order they are sent.

   SCTP peers can allocate up to 65535 streams for an association.  The
   cost for idle streams may or may not be zero, depending on the
   implementation, and the cost for non-idle streams is always greater
   than 0.  So administrators may wish to limit the number of possible
   streams on their diameter nodes according to the resources (i.e.
   memory, CPU power, etc.) of a particular node.

   On a Diameter client, the number of streams may be determined by the
   maximum number of peak users on the NAS.  If a stream is available
   per user, then this should be sufficient to prevent head-of-line
   blocking.  On a Diameter proxy, the number of streams may be
   determined by the maximum number of peak sessions in progress from
   that proxy to each downstream AAA server.

   Stream IDs do not need to be preserved by relay agents.  This
   simplifies implementation, as agents can easily handle forwarding
   between two associations with different numbers of streams.  For
   example, consider the following case, where a relay server DRL
   forwards messages between a NAS and a home server, HMS.  The NAS and
   DRL have agreed upon 1000 streams for their association, and DRL and
   HMS have agreed upon 2000 streams for their association.  The
   following figure shows the message flow from NAS to HMS via DRL, and
   the stream ID assignments for each message:

Aboba & Wood                Standards Track                    [Page 22]

RFC 3539                 AAA Transport Profile                 June 2003

   +------+                   +------+                   +------+
   |      |                   |      |                   |      |
   | NAS  |    --------->     | DRL  |     --------->    | HMS  |
   |      |                   |      |                   |      |
   +------+   1000 streams    +------+    2000 streams   +------+

              msg 1: str id 0             msg 1: str id 0
              msg 2: str id 1             msg 2: str id 1
              ...
              msg 1000: str id 999        msg 1000: str id 999
              msg 1001: str id 0          msg 1001: str id 1000

   DRL can forward messages 1 through 1000 to HMS using the same stream
   ID that NAS used to send to DRL.  However, since the NAS / DRL
   association has only 1000 streams, NAS wraps around to stream ID 0
   when sending message 1001.  The DRL / HMS association, on the other
   hand, has 2000 streams, so DRL can reassign message 1001 to stream ID
   1000 when forwarding it on to HMS.

   This distribution scheme acts like a hash table.  It is possible, yet
   unlikely, that two messages will end up in the same stream, and even
   less likely that there will be message loss resulting in blocking
   when this happens.  If it does turn out to be a problem, local
   administrators can increase the number of streams on their nodes to
   improve performance.

3.9.  Congestion Avoidance

   In order to improve upon default timer estimates, AAA implementations
   MAY implement the Congestion Manager (CM) [RFC3124].  CM is an end-
   system module that:

       (i) Enables an ensemble of multiple concurrent streams from a
           sender destined to the same receiver and sharing the same
           congestion properties to perform proper congestion avoidance
           and control, and

      (ii) Allows applications to easily adapt to network congestion.

   The CM helps integrate congestion management across all applications
   and transport protocols.  The CM maintains congestion parameters
   (available aggregate and per-stream bandwidth, per-receiver round-
   trip times, etc.) and exports an API that enables applications to
   learn about network characteristics, pass information to the CM,
   share congestion information with each other, and schedule data
   transmissions.

Aboba & Wood                Standards Track                    [Page 23]

RFC 3539                 AAA Transport Profile                 June 2003

   The CM enables the AAA application to access transport parameters
   (RTTavg, RTTdev) via callbacks.  RTO estimates are currently not
   available via the callback interface, though they probably should be.
   Where available, transport parameters SHOULD be used to improve upon
   default timer values.

3.10.  Premature Failover

   Premature failover is prevented by the watchdog functionality
   described above.  If the next hop does not return a reply, the AAA
   client will send a watchdog message to it to verify liveness.  If a
   watchdog reply is received, then the AAA client will know that the
   next hop server is functioning at the application layer.  As a
   result, it is only necessary to provide terminal error messages, such
   as the following:

      "Busy": agent/Server too busy to handle additional requests, NAS
      should failover all requests to another agent/server.

      "Can't Locate": agent can't locate the AAA server for the
      indicated realm; NAS should failover that request to another
      proxy.

      "Can't Forward": agent has tried both primary and secondary AAA
      servers with no response; NAS should failover the request to
      another agent.

   Note that these messages differ in their scope.  The "Busy" message
   tells the NAS that the agent/server is too busy for ANY request.  The
   "Can't Locate" and "Can't Forward" messages indicate that the
   ultimate destination cannot be reached or isn't responding, implying
   per-request failover.

4.  Security Considerations

   Since AAA clients, agents and servers serve as network access
   gatekeepers, they are tempting targets for attackers.  General
   security considerations concerning TCP congestion control are
   discussed in [RFC2581].  However, there are some additional
   considerations that apply to this specification.

   By enabling failover between AAA agents, this specification improves
   the resilience of AAA applications.  However, it may also open
   avenues for denial of service attacks.

   The failover algorithm is driven by lack of response to AAA requests
   and watchdog packets.  On a lightly loaded network where AAA
   responses would not be received prior to expiration of the watchdog

Aboba & Wood                Standards Track                    [Page 24]

RFC 3539                 AAA Transport Profile                 June 2003

   timer, an attacker can swamp the network, causing watchdog packets to
   be dropped.  This will cause the AAA client to switch to another AAA
   agent, where the attack can be repeated.  By causing the AAA client
   to cycle between AAA agents, service can be denied to users desiring
   network access.

   Where TLS [RFC2246] is being used to provide AAA security, there will
   be a vulnerability to spoofed reset packets, as well as other
   transport layer denial of service attacks (e.g. SYN flooding).  Since
   SCTP offers improved denial of service resilience compared with TCP,
   where AAA applications run over SCTP, this can be mitigated to some
   extent.

   Where IPsec [RFC2401] is used to provide security, it is important
   that IPsec policy require IPsec on incoming packets.  In order to
   enable a AAA client to determine what security mechanisms are in use
   on an agent or server without prior knowledge, it may be tempting to
   initiate a connection in the clear, and then to have the AAA agent
   respond with IKE [RFC2409].  While this approach minimizes required
   client configuration, it increases the vulnerability to denial of
   service attack, since a connection request can now not only tie up
   transport resources, but also resources within the IKE
   implementation.

5.  IANA Considerations

   This document does not create any new number spaces for IANA
   administration.

References

6.1.  Normative References

   [RFC793]  Postel, J., "Transmission Control Protocol", STD 7, RFC
             793, September 1981.

   [RFC896]  Nagle, J., "Congestion Control in IP/TCP internetworks",
             RFC 896, January 1984.

   [RFC1750] Eastlake, D., Crocker, S. and J. Schiller, "Randomness
             Recommendations for Security", RFC 1750, December 1994.

   [RFC2018] Mathis, M., Mahdavi, J., Floyd, S. and A. Romanow, "TCP
             Selective Acknowledgment Options", RFC 2018, October 1996.

   [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

Aboba & Wood                Standards Track                    [Page 25]

RFC 3539                 AAA Transport Profile                 June 2003

   [RFC2486] Aboba, B. and M. Beadles, "The Network Access Identifier",
             RFC 2486, January 1999.

   [RFC2581] Allman, M., Paxson, V. and W. Stevens, "TCP Congestion
             Control", RFC 2581, April 1999.

   [RFC2883] Floyd, S., Mahdavi, J., Mathis, M., Podolsky, M. and A.
             Romanow, "An Extension to the Selective Acknowledgment
             (SACK) Option for TCP", RFC 2883, July 2000.

   [RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
             Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M., Zhang,
             L. and V. Paxson, "Stream Control Transmission Protocol",
             RFC 2960, October 2000.

   [RFC2988] Paxson, V. and M. Allman, "Computing TCP's Retransmission
             Timer", RFC 2988, November 2000.

   [RFC3042] Allman, M., Balakrishnan H. and S. Floyd, "Enhancing TCP's
             Loss Recovery Using Limited Transmit", RFC 3042, January
             2001.

   [RFC3074] Volz, B., Gonczi, S., Lemon, T. and R. Stevens, "DHC Load
             Balancing Algorithm", RFC 3074, February 2001.

   [RFC3124] Balakrishnan, H. and S. Seshan, "The Congestion Manager",
             RFC 3124, June 2001.

6.2.  Informative References

   [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
             RFC 2246, January 1999.

   [RFC2401] Atkinson, R. and S. Kent, "Security Architecture for the
             Internet Protocol", RFC 2401, November 1998.

   [RFC2409] Harkins, D. and D. Carrel, "The Internet Key Exchange
             (IKE)", RFC 2409, November 1998.

   [RFC2607] Aboba, B. and J. Vollbrecht, "Proxy Chaining and Policy
             Implementation in Roaming", RFC 2607, June 1999.

   [RFC2861] Handley, M., Padhye, J. and S. Floyd, "TCP Congestion
             Window Validation", RFC 2861, June 2000.

   [RFC2865] Rigney, C., Willens, S., Rubens, A. and W. Simpson, "Remote
             Authentication Dial In User Service (RADIUS)", RFC 2865,
             June 2000.

Aboba & Wood                Standards Track                    [Page 26]

RFC 3539                 AAA Transport Profile                 June 2003

   [RFC2866] Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

   [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41, RFC
             2914, September 2000.

   [RFC2975] Aboba, B., Arkko, J. and D. Harrington, "Introduction to
             Accounting Management", RFC 2975, June 2000.

   [RFC3390] Allman, M., Floyd, S. and C. Partridge, "Increasing TCP's
             Initial Window", RFC 3390, October 2002.

   [Congest] Jacobson, V., "Congestion Avoidance and Control", Computer
             Communication Review, vol. 18, no. 4, pp. 314-329, Aug.
             1988.  ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z

   [Paxson]  Paxson, V., "Measurement and Analysis of End-to-End
             Internet Dynamics", Ph.D. Thesis, Computer Science
             Division, University of California, Berkeley, April 1997.

Aboba & Wood                Standards Track                    [Page 27]

RFC 3539                 AAA Transport Profile                 June 2003

Appendix A - Detailed Watchdog Algorithm

   In this Appendix, the memory control structure that contains all
   information regarding a specific peer is referred to as a Peer
   Control Block, or PCB.  The PCB contains the following fields:

   Status:
     OKAY:       The connection is up
     SUSPECT:    Failover has been initiated on the connection.
     DOWN:       Connection has been closed.
     REOPEN:     Attempting to reopen a closed connection
     INITIAL:    The initial state of the pcb when it is first created.
                 The pcb has never been opened.

   Variables:
     Pending:    Set to TRUE if there is an outstanding unanswered
                 watchdog request
     Tw:         Watchdog timer value
     NumDWA:     Number of DWAs received during REOPEN

   Tw is the watchdog timer, measured in seconds.  Every  second, Tw  is
   decremented.  When it reaches 0, the OnTimerElapsed event (see below)
   is invoked.  Pseudo-code for the algorithm is included on the
   following pages.

   SetWatchdog()
   {
   /*
    SetWatchdog() is called whenever it is necessary
    to reset the watchdog timer Tw.  The value of the
    watchdog timer is calculated based on the default
    initial value TWINIT and a jitter ranging from
    -2 to 2 seconds.  The default for TWINIT is 30 seconds,
    and MUST NOT be set lower than 6 seconds.
   */
       Tw=TWINIT -2.0 + 4.0 * random() ;
       SetTimer(Tw) ;
       return ;
   }

   /*
    OnReceive() is called whenever a message
    is received from the peer.  This message MAY
    be a request or an answer, and can include
    DWR and DWA messages.  Pending is assumed to
    be a global variable.
   */
   OnReceive(pcb, msgType)

Aboba & Wood                Standards Track                    [Page 28]

RFC 3539                 AAA Transport Profile                 June 2003

   {
      if (msgType == DWA) {
           Pending = FALSE;
           }
      switch (pcb->Status){
      case OKAY:
           SetWatchdog();
           break;
      case SUSPECT:
           pcb->Status = OKAY;
           Failback(pcb);
           SetWatchdog();
           break;
      case REOPEN:
           if (msgType == DWA) {
              NumDWA++;
              if (NumDWA == 3) {
                 pcb->status = OKAY;
                 Failback();
              }
           } else {
              Throwaway(received packet);
           }
           break;
      case INITIAL:
      case DOWN:
           Throwaway(received packet);
           break;
      default:
           Error("Shouldn't be here!");
           break;
      }
   }

   /*
   OnTimerElapsed() is called whenever Tw reaches zero (0).
   */
   OnTimerElapsed(pcb)
   {
       switch (pcb->status){
          case OKAY:
             if (!Pending) {
                SendWatchdog(pcb);
                SetWatchdog();
                Pending = TRUE;
                break;
             }
             pcb->status = SUSPECT;

Aboba & Wood                Standards Track                    [Page 29]

RFC 3539                 AAA Transport Profile                 June 2003

             FailOver(pcb);
             SetWatchdog();
             break ;
          case SUSPECT:
             pcb->status = DOWN;
             CloseConnection(pcb);
             SetWatchdog();
             break;
          case INITIAL:
          case DOWN:
             AttemptOpen(pcb);
             SetWatchdog();
             break;
          case REOPEN:
             if (!Pending) {
                SendWatchdog(pbc);
                SetWatchdog();
                Pending = TRUE;
                break;
             }
             if (NumDWA < 0) {
                pcb->status = DOWN;
                CloseConnection(pcb);
             } else {
                NumDWA = -1;
             }
             SetWatchdog();
             break;
          default:
             error("Shouldn't be here!);
             break;
          }
   }

   /*
   OnConnectionUp() is called whenever a connection comes up
   */
   OnConnectionUp(pcb)
   {
       switch (pcb->status){
          case INITIAL:
             pcb->status = OKAY;
             SetWatchdog();
             break;
          case DOWN:
             pcb->status = REOPEN;
             NumDWA = 0;
             SendWatchdog(pcb);

Aboba & Wood                Standards Track                    [Page 30]

RFC 3539                 AAA Transport Profile                 June 2003

             SetWatchdog();
             Pending = TRUE;
             break;
          default:
             error("Shouldn't be here!);
             break;
          }
   }

   /*
   OnConnectionDown() is called whenever a connection goes down
   */
   OnConnectionDown(pcb)
   {
       pcb->status = DOWN;
       CloseConnection();
       switch (pcb->status){
          case OKAY:
             Failover(pcb);
             SetWatchdog();
             break;
          case SUSPECT:
          case REOPEN:
             SetWatchdog();
             break;
          default:
             error("Shouldn't be here!);
             break;
          }
   }

   /*  Here is the state machine equivalent to the above code:

   STATE         Event                Actions              New State
   =====         ------               -------              ----------
   OKAY          Receive DWA          Pending = FALSE
                                      SetWatchdog()        OKAY
   OKAY          Receive non-DWA      SetWatchdog()        OKAY
   SUSPECT       Receive DWA          Pending = FALSE
                                      Failback()
                                      SetWatchdog()        OKAY
   SUSPECT       Receive non-DWA      Failback()
                                      SetWatchdog()        OKAY
   REOPEN        Receive DWA &        Pending = FALSE
                 NumDWA == 2          NumDWA++
                                      Failback()           OKAY
   REOPEN        Receive DWA &        Pending = FALSE
                 NumDWA < 2           NumDWA++             REOPEN

Aboba & Wood                Standards Track                    [Page 31]

RFC 3539                 AAA Transport Profile                 June 2003

   STATE         Event                Actions              New State
   =====         ------               -------              ----------
   REOPEN        Receive non-DWA      Throwaway()          REOPEN
   INITIAL       Receive DWA          Pending = FALSE
                                      Throwaway()          INITIAL
   INITIAL       Receive non-DWA      Throwaway()          INITIAL
   DOWN          Receive DWA          Pending = FALSE
                                      Throwaway()          DOWN
   DOWN          Receive non-DWA      Throwaway()          DOWN
   OKAY          Timer expires &      SendWatchdog()
                 !Pending             SetWatchdog()
                                      Pending = TRUE       OKAY
   OKAY          Timer expires &      Failover()
                 Pending              SetWatchdog()        SUSPECT
   SUSPECT       Timer expires        CloseConnection()
                                      SetWatchdog()        DOWN
   INITIAL       Timer expires        AttemptOpen()
                                      SetWatchdog()        INITIAL
   DOWN          Timer expires        AttemptOpen()
                                      SetWatchdog()        DOWN
   REOPEN        Timer expires &      SendWatchdog()
                 !Pending             SetWatchdog()
                                      Pending = TRUE       REOPEN
   REOPEN        Timer expires &      CloseConnection()
                 Pending &            SetWatchdog()
                 NumDWA < 0                                DOWN
   REOPEN        Timer expires &      NumDWA = -1
                 Pending &            SetWatchdog()
                 NumDWA >= 0                               REOPEN
   INITIAL       Connection up        SetWatchdog()        OKAY
   DOWN          Connection up        NumDWA = 0
                                      SendWatchdog()
                                      SetWatchdog()
                                      Pending = TRUE       REOPEN
   OKAY          Connection down      CloseConnection()
                                      Failover()
                                      SetWatchdog()        DOWN
   SUSPECT       Connection down      CloseConnection()
                                      SetWatchdog()        DOWN
   REOPEN        Connection down      CloseConnection()
                                      SetWatchdog()        DOWN
   */

Aboba & Wood                Standards Track                    [Page 32]

RFC 3539                 AAA Transport Profile                 June 2003

Appendix B - AAA Agents

   As described in [RFC2865] and [RFC2607], AAA agents have become
   popular in order to support services such as roaming and shared use
   networks.  Such agents are used both for
   authentication/authorization, as well as accounting [RFC2975].

   AAA agents include:

      Relays
      Proxies
      Re-directs
      Store and Forward proxies
      Transport layer proxies

   The transport layer behavior of each of these agents is described
   below.

B.1 Relays and Proxies

   While the application-layer behavior of relays and proxies are
   different, at the transport layer the behavior is similar.  In both
   cases, two connections are established: one from the AAA client (NAS)
   to the relay/proxy, and another from the relay/proxy to the AAA
   server.  The relay/proxy does not respond to a client request until
   it receives a response from the server.  Since the two connections
   are de-coupled, the end-to-end conversation between the client and
   server may not self clock.

   Since AAA transport is typically application-driven, there is
   frequently not enough traffic to enable ACK piggybacking.  As a
   result, the Nagle algorithm is rarely triggered, and delayed ACKs may
   comprise nearly half the traffic.  Thus AAA protocols running over
   reliable transport will see packet traffic nearly double that
   experienced with UDP transport.  Since ACK parameters (such as the
   value of the delayed ACK timer) are typically fixed by the TCP
   implementation and are not tunable by the application, there is
   little that can be done about this.

Aboba & Wood                Standards Track                    [Page 33]

RFC 3539                 AAA Transport Profile                 June 2003

   A typical trace of a conversation between a NAS, proxy and server is
   shown below:

   Time            NAS           Relay/Proxy           Server
   ------          ---           -----------           ------

   0               Request
                   ------->
   OTTnp + Tpr                     Request
                                   ------->

   OTTnp + TdA                     Delayed ACK
                                   <-------

   OTTnp + OTTps +                                 Reply/ACK
   Tpr + Tsr                                       <-------

   OTTnp + OTTps +
   Tpr + Tsr +                     Reply
   OTTsp + TpR                     <-------

   OTTnp + OTTps +
   Tpr + Tsr +                     Delayed ACK
   OTTsp + TdA                     ------->

   OTTnp + OTTps +
   OTTsp + OTTpn +
   Tpr + Tsr +      Delayed ACK
   TpR + TdA        ------->

   Key
   ---
   OTT   = One-way Trip Time
   OTTnp = One-way trip time (NAS to Relay/Proxy)
   OTTpn = One-way trip time (Relay/Proxy to NAS)
   OTTps = One-way trip time (Relay/Proxy to Server)
   OTTsp = One-way trip time (Server to Relay/Proxy)
   TdA   = Delayed ACK timer
   Tpr   = Relay/Proxy request processing time
   TpR   = Relay/Proxy reply processing time
   Tsr   = Server request processing time

   At time 0, the NAS sends a request to the relay/proxy.  Ignoring the
   serialization time, the request arrives at the relay/proxy at time
   OTTnp, and the relay/proxy takes an additional Tpr in order to
   forward the request toward the home server.  At time TdA after

Aboba & Wood                Standards Track                    [Page 34]

RFC 3539                 AAA Transport Profile                 June 2003

   receiving the request, the relay/proxy sends a delayed ACK.  The
   delayed ACK is sent, rather than being piggybacked on the reply, as
   long as TdA < OTTps + OTTsp + Tpr + Tsr + TpR.

   Typically Tpr < TdA, so that the delayed ACK is sent after the
   relay/proxy forwards the request toward the server, but before the
   relay/proxy receives the reply from the server.  However, depending
   on the TCP implementation on the relay/proxy and when the request is
   received, it is also possible for the delayed ACK to be sent prior to
   forwarding the request.

   At time OTTnp + OTTps + Tpr, the server receives the request, and Tsr
   later, it generates the reply.  Where Tsr < TdA, the reply will
   contain a piggybacked ACK.  However, depending on the server
   responsiveness and TCP implementation, the ACK and reply may be sent
   separately.  This can occur, for example, where a slow database or
   storage system must be accessed prior to sending the reply.

   At time OTTnp + OTTps + OTTsp + Tpr + Tsr the reply/ACK reaches the
   relay/proxy, which then takes TpR additional time to forward the
   reply to the NAS.  At TdA after receiving the reply, the relay/proxy
   generates a delayed ACK.  Typically TpR < TdA so that the delayed ACK
   is sent to the server after the relay/proxy forwards the reply to the
   NAS.  However, depending on the circumstances and the relay/proxy TCP
   implementation, the delayed ACK may be sent first.

   As with a delayed ACK sent in response to a request, which may be
   piggybacked if the reply can be received quickly enough, piggybacking
   of the ACK sent in response to a reply from the server is only
   possible if additional request traffic is available.  However, due to
   the high inter-packet spacings in typical AAA scenarios, this is
   unlikely unless the AAA protocol supports a reply ACK.

   At time OTTnp + OTTps + OTTsp + OTTpn + Tpr + Tsr + TpR the NAS
   receives the reply.  TdA later, a delayed ACK is generated.

B.2 Re-directs

   Re-directs operate by referring a NAS to the AAA server, enabling the
   NAS to talk to the AAA server directly.  Since a direct transport
   connection is established, the end-to-end connection will self-clock.

   With re-directs, delayed ACKs are less frequent than with
   application-layer proxies since the Re-direct and Server will
   typically piggyback replies with ACKs.

Aboba & Wood                Standards Track                    [Page 35]

RFC 3539                 AAA Transport Profile                 June 2003

   The sequence of events is as follows:

   Time            NAS             Re-direct       Server
   ------          ---             ---------       ------

   0               Request
                   ------->
   OTTnp + Tpr                     Redirect/ACK
                                   <-------

   OTTnp + Tpr +   Request
   OTTpn + Tnr     ------->

   OTTnp + OTTpn +
   Tpr + Tsr +                                     Reply/ACK
   OTTns                                           <-------

   OTTnp + OTTpn +
   OTTns + OTTsn +
   Tpr + Tsr +      Delayed ACK
   TdA              ------->

   Key
   ---
   OTT   = One-way Trip Time
   OTTnp = One-way trip time (NAS to Re-direct)
   OTTpn = One-way trip time (Re-direct to NAS)
   OTTns = One-way trip time (NAS to Server)
   OTTsn = One-way trip time (Server to NAS)
   TdA   = Delayed ACK timer
   Tpr   = Re-direct processing time
   Tnr   = NAS re-direct processing time
   Tsr   = Server request processing time

B.3 Store and Forward Proxies

   With a store and forward proxy, the proxy may send a reply to the NAS
   prior to forwarding the request to the server.  While store and
   forward proxies are most frequently deployed for accounting
   [RFC2975], they also can be used to implement
   authentication/authorization policy, as described in [RFC2607].

   As noted in [RFC2975], store and forward proxies can have a negative
   effect on accounting reliability.  By sending a reply to the NAS
   without receiving one from the accounting server, store and forward
   proxies fool the NAS into thinking that the accounting request had
   been accepted by the accounting server when this is not the case.  As
   a result, the NAS can delete the accounting packet from non-volatile

Aboba & Wood                Standards Track                    [Page 36]

RFC 3539                 AAA Transport Profile                 June 2003

   storage before it has been accepted by the accounting server.  That
   leaves the proxy responsible for delivering accounting packets.  If
   the proxy involves moving parts (e.g. a disk drive) while the NAS
   does not, overall system reliability can be reduced.  As a result,
   store and forward proxies SHOULD NOT be used.

   The sequence of events is as follows:

   Time            NAS             Proxy           Server
   ------          ---             -----           ------

   0               Request
                   ------->
   OTTnp + TpR                     Reply/ACK
                                   <-------

   OTTnp + Tpr                     Request
                                   ------->

   OTTnp + OTTph +                                 Reply/ACK
   Tpr + Tsr                                       <-------

   OTTnp + OTTph +
   Tpr + Tsr +                     Reply
   OTThp + TpR                     <-------

   OTTnp + OTTph +
   Tpr + Tsr +                     Delayed ACK
   OTThp + TdA                     ------->

   OTTnp + OTTph +
   OTThp + OTTpn +
   Tpr + Tsr +      Delayed ACK
   TpR + TdA        ------->

   Key
   ---
   OTT   = One-way Trip Time
   OTTnp = One-way trip time (NAS to Proxy)
   OTTpn = One-way trip time (Proxy to NAS)
   OTTph = One-way trip time (Proxy to Home server)
   OTThp = One-way trip time (Home Server to Proxy)
   TdA   = Delayed ACK timer
   Tpr   = Proxy request processing time
   TpR   = Proxy reply processing time
   Tsr   = Server request processing time

Aboba & Wood                Standards Track                    [Page 37]

RFC 3539                 AAA Transport Profile                 June 2003

B.4 Transport Layer Proxies

   In addition to acting as proxies at the application layer, transport
   layer proxies forward transport ACKs between the AAA client and
   server.  This splices together the client-proxy and proxy-server
   connections into a single connection that behaves as though it
   operates end-to-end, exhibiting self-clocking.  However, since
   transport proxies operate at the transport layer, they cannot be
   implemented purely as applications and they are rarely deployed.

   With a transport proxy, the sequence of events is as follows:

   Time            NAS             Proxy           Home Server
   ------          ---             -----           -----------

   0               Request
                   ------->
   OTTnp + Tpr                     Request
                                   ------->

   OTTnp + OTTph +                                 Reply/ACK
   Tpr + Tsr                                       <-------

   OTTnp + OTTph +
   Tpr + Tsr +                     Reply/ACK
   OTThp + TpR                     <-------

   OTTnp + OTTph +
   OTThp + OTTpn +
   Tpr + Tsr +      Delayed ACK
   TpR + TdA        ------->

   OTTnp + OTTph +
   OTThp + OTTpn +
   Tpr + Tsr +                     Delayed ACK
   TpR + TpD                       ------->

   Key
   ---
   OTT   = One-way Trip Time
   OTTnp = One-way trip time (NAS to Proxy)
   OTTpn = One-way trip time (Proxy to NAS)
   OTTph = One-way trip time (Proxy to Home server)
   OTThp = One-way trip time (Home Server to Proxy)
   TdA   = Delayed ACK timer
   Tpr   = Proxy request processing time
   TpR   = Proxy reply processing time

Aboba & Wood                Standards Track                    [Page 38]

RFC 3539                 AAA Transport Profile                 June 2003

   Tsr   = Server request processing time
   TpD   = Proxy delayed ack processing time

Intellectual Property Statement

   The IETF takes no position regarding the validity or scope of any
   intellectual property or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; neither does it represent that it
   has made any effort to identify any such rights.  Information on the
   IETF's procedures with respect to rights in standards-track and
   standards-related documentation can be found in BCP-11.  Copies of
   claims of rights made available for publication and any assurances of
   licenses to be made available, or the result of an attempt made to
   obtain a general license or permission for the use of such
   proprietary rights by implementors or users of this specification can
   be obtained from the IETF Secretariat.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights which may cover technology that may be required to practice
   this standard.  Please address the information to the IETF Executive
   Director.

Acknowledgments

   Thanks to Allison Mankin of AT&T, Barney Wolff of Databus, Steve Rich
   of Cisco, Randy Bush of AT&T, Bo Landarv of IP Unplugged, Jari Arkko
   of Ericsson, and Pat Calhoun of Blackstorm Networks for fruitful
   discussions relating to AAA transport.

Aboba & Wood                Standards Track                    [Page 39]

RFC 3539                 AAA Transport Profile                 June 2003

Authors' Addresses

   Bernard Aboba
   Microsoft Corporation
   One Microsoft Way
   Redmond, WA 98052

   Phone: +1 425 706 6605
   Fax:   +1 425 936 7329
   EMail: bernarda@microsoft.com

   Jonathan Wood
   Sun Microsystems, Inc.
   901 San Antonio Road
   Palo Alto, CA 94303

   EMail: jonwood@speakeasy.net

Aboba & Wood                Standards Track                    [Page 40]

RFC 3539                 AAA Transport Profile                 June 2003

Full Copyright Statement

   Copyright (C) The Internet Society (2003).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

Aboba & Wood                Standards Track                    [Page 41]